Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
3 |
2
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
4 |
|
simp1 |
⊢ ( ( 𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) → 𝑋 ∈ ℚ ) |
5 |
|
3simpc |
⊢ ( ( 𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) → ( 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) ) |
6 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( ℚ ∖ { 0 } ) ↔ ( 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ ( ℚ ∖ { 0 } ) ) |
8 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
9 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
10 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
11 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
12 |
9 10 11
|
drngui |
⊢ ( ℚ ∖ { 0 } ) = ( Unit ‘ 𝑄 ) |
13 |
|
eqid |
⊢ ( /r ‘ 𝑄 ) = ( /r ‘ 𝑄 ) |
14 |
1 8 12 13
|
subrgdv |
⊢ ( ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ 𝑋 ∈ ℚ ∧ 𝑌 ∈ ( ℚ ∖ { 0 } ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ 𝑄 ) 𝑌 ) ) |
15 |
3 4 7 14
|
mp3an2i |
⊢ ( ( 𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ 𝑄 ) 𝑌 ) ) |
16 |
15
|
eqcomd |
⊢ ( ( 𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0 ) → ( 𝑋 ( /r ‘ 𝑄 ) 𝑌 ) = ( 𝑋 / 𝑌 ) ) |