Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
2 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
3 |
2
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
4 |
|
simp1 |
|- ( ( X e. QQ /\ Y e. QQ /\ Y =/= 0 ) -> X e. QQ ) |
5 |
|
3simpc |
|- ( ( X e. QQ /\ Y e. QQ /\ Y =/= 0 ) -> ( Y e. QQ /\ Y =/= 0 ) ) |
6 |
|
eldifsn |
|- ( Y e. ( QQ \ { 0 } ) <-> ( Y e. QQ /\ Y =/= 0 ) ) |
7 |
5 6
|
sylibr |
|- ( ( X e. QQ /\ Y e. QQ /\ Y =/= 0 ) -> Y e. ( QQ \ { 0 } ) ) |
8 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
9 |
1
|
qrngbas |
|- QQ = ( Base ` Q ) |
10 |
1
|
qrng0 |
|- 0 = ( 0g ` Q ) |
11 |
1
|
qdrng |
|- Q e. DivRing |
12 |
9 10 11
|
drngui |
|- ( QQ \ { 0 } ) = ( Unit ` Q ) |
13 |
|
eqid |
|- ( /r ` Q ) = ( /r ` Q ) |
14 |
1 8 12 13
|
subrgdv |
|- ( ( QQ e. ( SubRing ` CCfld ) /\ X e. QQ /\ Y e. ( QQ \ { 0 } ) ) -> ( X / Y ) = ( X ( /r ` Q ) Y ) ) |
15 |
3 4 7 14
|
mp3an2i |
|- ( ( X e. QQ /\ Y e. QQ /\ Y =/= 0 ) -> ( X / Y ) = ( X ( /r ` Q ) Y ) ) |
16 |
15
|
eqcomd |
|- ( ( X e. QQ /\ Y e. QQ /\ Y =/= 0 ) -> ( X ( /r ` Q ) Y ) = ( X / Y ) ) |