Metamath Proof Explorer


Theorem qrngdiv

Description: The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis qrng.q Q = fld 𝑠
Assertion qrngdiv X Y Y 0 X / r Q Y = X Y

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qsubdrg SubRing fld fld 𝑠 DivRing
3 2 simpli SubRing fld
4 simp1 X Y Y 0 X
5 3simpc X Y Y 0 Y Y 0
6 eldifsn Y 0 Y Y 0
7 5 6 sylibr X Y Y 0 Y 0
8 cnflddiv ÷ = / r fld
9 1 qrngbas = Base Q
10 1 qrng0 0 = 0 Q
11 1 qdrng Q DivRing
12 9 10 11 drngui 0 = Unit Q
13 eqid / r Q = / r Q
14 1 8 12 13 subrgdv SubRing fld X Y 0 X Y = X / r Q Y
15 3 4 7 14 mp3an2i X Y Y 0 X Y = X / r Q Y
16 15 eqcomd X Y Y 0 X / r Q Y = X Y