| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 | 6 | ltnri | ⊢ ¬  1  <  1 | 
						
							| 8 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 9 | 1 | qrng1 | ⊢ 1  =  ( 1r ‘ 𝑄 ) | 
						
							| 10 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 11 | 2 9 10 | abv1z | ⊢ ( ( 𝐹  ∈  𝐴  ∧  1  ≠  0 )  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 12 | 8 11 | mpan2 | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 13 | 12 | breq2d | ⊢ ( 𝐹  ∈  𝐴  →  ( 1  <  ( 𝐹 ‘ 1 )  ↔  1  <  1 ) ) | 
						
							| 14 | 7 13 | mtbiri | ⊢ ( 𝐹  ∈  𝐴  →  ¬  1  <  ( 𝐹 ‘ 1 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ¬  1  <  ( 𝐹 ‘ 1 ) ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑛  =  1  →  ( 1  <  ( 𝐹 ‘ 𝑛 )  ↔  1  <  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 19 | 16 18 | syl5ibcom | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝑛  =  1  →  1  <  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 20 | 15 19 | mtod | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ¬  𝑛  =  1 ) | 
						
							| 21 |  | simprl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 22 |  | elnn1uz2 | ⊢ ( 𝑛  ∈  ℕ  ↔  ( 𝑛  =  1  ∨  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝑛  =  1  ∨  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 24 | 23 | ord | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ¬  𝑛  =  1  →  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 25 | 20 24 | mpd | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 26 |  | eqid | ⊢ ( ( log ‘ ( 𝐹 ‘ 𝑛 ) )  /  ( log ‘ 𝑛 ) )  =  ( ( log ‘ ( 𝐹 ‘ 𝑛 ) )  /  ( log ‘ 𝑛 ) ) | 
						
							| 27 | 1 2 3 4 5 25 16 26 | ostth2 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑛  ∈  ℕ  ∧  1  <  ( 𝐹 ‘ 𝑛 ) ) )  →  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 28 | 27 | rexlimdvaa | ⊢ ( 𝐹  ∈  𝐴  →  ( ∃ 𝑛  ∈  ℕ 1  <  ( 𝐹 ‘ 𝑛 )  →  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 29 |  | 3mix2 | ⊢ ( ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 30 | 28 29 | syl6 | ⊢ ( 𝐹  ∈  𝐴  →  ( ∃ 𝑛  ∈  ℕ 1  <  ( 𝐹 ‘ 𝑛 )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 31 |  | ralnex | ⊢ ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ↔  ¬  ∃ 𝑛  ∈  ℕ 1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 32 |  | simpll | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 33 |  | simplr | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 35 | 34 | breq2d | ⊢ ( 𝑛  =  𝑘  →  ( 1  <  ( 𝐹 ‘ 𝑛 )  ↔  1  <  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 36 | 35 | notbid | ⊢ ( 𝑛  =  𝑘  →  ( ¬  1  <  ( 𝐹 ‘ 𝑛 )  ↔  ¬  1  <  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 37 | 36 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ↔  ∀ 𝑘  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 38 | 33 37 | sylib | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑘  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑝  ∈  ℙ ) | 
						
							| 40 |  | simprr | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 41 |  | eqid | ⊢ - ( ( log ‘ ( 𝐹 ‘ 𝑝 ) )  /  ( log ‘ 𝑝 ) )  =  - ( ( log ‘ ( 𝐹 ‘ 𝑝 ) )  /  ( log ‘ 𝑝 ) ) | 
						
							| 42 |  | eqid | ⊢ if ( ( 𝐹 ‘ 𝑝 )  ≤  ( 𝐹 ‘ 𝑧 ) ,  ( 𝐹 ‘ 𝑧 ) ,  ( 𝐹 ‘ 𝑝 ) )  =  if ( ( 𝐹 ‘ 𝑝 )  ≤  ( 𝐹 ‘ 𝑧 ) ,  ( 𝐹 ‘ 𝑧 ) ,  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 43 | 1 2 3 4 32 38 39 40 41 42 | ostth3 | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  ( 𝑝  ∈  ℙ  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 44 | 43 | expr | ⊢ ( ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝐹 ‘ 𝑝 )  <  1  →  ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 45 | 44 | reximdva | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑝  ∈  ℙ ( 𝐹 ‘ 𝑝 )  <  1  →  ∃ 𝑝  ∈  ℙ ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 46 | 1 2 3 | padicabvf | ⊢ 𝐽 : ℙ ⟶ 𝐴 | 
						
							| 47 |  | ffn | ⊢ ( 𝐽 : ℙ ⟶ 𝐴  →  𝐽  Fn  ℙ ) | 
						
							| 48 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝐽 ‘ 𝑝 )  →  ( 𝑔 ‘ 𝑦 )  =  ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( 𝑔  =  ( 𝐽 ‘ 𝑝 )  →  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 )  =  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) | 
						
							| 50 | 49 | mpteq2dv | ⊢ ( 𝑔  =  ( 𝐽 ‘ 𝑝 )  →  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( 𝑔  =  ( 𝐽 ‘ 𝑝 )  →  ( 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 52 | 51 | rexrn | ⊢ ( 𝐽  Fn  ℙ  →  ( ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  ∃ 𝑝  ∈  ℙ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 53 | 46 47 52 | mp2b | ⊢ ( ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  ∃ 𝑝  ∈  ℙ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 54 | 53 | rexbii | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  ∃ 𝑎  ∈  ℝ+ ∃ 𝑝  ∈  ℙ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 55 |  | rexcom | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑝  ∈  ℙ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 56 | 54 55 | bitri | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 57 |  | 3mix3 | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 58 | 56 57 | sylbir | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 59 | 45 58 | syl6 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑝  ∈  ℙ ( 𝐹 ‘ 𝑝 )  <  1  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 60 |  | ralnex | ⊢ ( ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1  ↔  ¬  ∃ 𝑝  ∈  ℙ ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 61 |  | simpl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 62 |  | simprl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 63 | 62 37 | sylib | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑘  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 64 |  | simprr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑝  =  𝑘  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 66 | 65 | breq1d | ⊢ ( 𝑝  =  𝑘  →  ( ( 𝐹 ‘ 𝑝 )  <  1  ↔  ( 𝐹 ‘ 𝑘 )  <  1 ) ) | 
						
							| 67 | 66 | notbid | ⊢ ( 𝑝  =  𝑘  →  ( ¬  ( 𝐹 ‘ 𝑝 )  <  1  ↔  ¬  ( 𝐹 ‘ 𝑘 )  <  1 ) ) | 
						
							| 68 | 67 | cbvralvw | ⊢ ( ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1  ↔  ∀ 𝑘  ∈  ℙ ¬  ( 𝐹 ‘ 𝑘 )  <  1 ) | 
						
							| 69 | 64 68 | sylib | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∀ 𝑘  ∈  ℙ ¬  ( 𝐹 ‘ 𝑘 )  <  1 ) | 
						
							| 70 | 1 2 3 4 61 63 69 | ostth1 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝐹  =  𝐾 ) | 
						
							| 71 | 70 | 3mix1d | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  ∧  ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 72 | 71 | expr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  →  ( ∀ 𝑝  ∈  ℙ ¬  ( 𝐹 ‘ 𝑝 )  <  1  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 73 | 60 72 | biimtrrid | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  →  ( ¬  ∃ 𝑝  ∈  ℙ ( 𝐹 ‘ 𝑝 )  <  1  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 74 | 59 73 | pm2.61d | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( 𝐹  ∈  𝐴  →  ( ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 76 | 31 75 | biimtrrid | ⊢ ( 𝐹  ∈  𝐴  →  ( ¬  ∃ 𝑛  ∈  ℕ 1  <  ( 𝐹 ‘ 𝑛 )  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) | 
						
							| 77 | 30 76 | pm2.61d | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) | 
						
							| 78 |  | id | ⊢ ( 𝐹  =  𝐾  →  𝐹  =  𝐾 ) | 
						
							| 79 | 1 | qdrng | ⊢ 𝑄  ∈  DivRing | 
						
							| 80 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 81 | 2 80 10 4 | abvtriv | ⊢ ( 𝑄  ∈  DivRing  →  𝐾  ∈  𝐴 ) | 
						
							| 82 | 79 81 | ax-mp | ⊢ 𝐾  ∈  𝐴 | 
						
							| 83 | 78 82 | eqeltrdi | ⊢ ( 𝐹  =  𝐾  →  𝐹  ∈  𝐴 ) | 
						
							| 84 | 1 2 | qabsabv | ⊢ ( abs  ↾  ℚ )  ∈  𝐴 | 
						
							| 85 |  | fvres | ⊢ ( 𝑦  ∈  ℚ  →  ( ( abs  ↾  ℚ ) ‘ 𝑦 )  =  ( abs ‘ 𝑦 ) ) | 
						
							| 86 | 85 | oveq1d | ⊢ ( 𝑦  ∈  ℚ  →  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 )  =  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) | 
						
							| 87 | 86 | mpteq2ia | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) | 
						
							| 88 | 87 | eqcomi | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( abs  ↾  ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) | 
						
							| 89 | 2 80 88 | abvcxp | ⊢ ( ( ( abs  ↾  ℚ )  ∈  𝐴  ∧  𝑎  ∈  ( 0 (,] 1 ) )  →  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) | 
						
							| 90 | 84 89 | mpan | ⊢ ( 𝑎  ∈  ( 0 (,] 1 )  →  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) | 
						
							| 91 |  | eleq1 | ⊢ ( 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  ( 𝐹  ∈  𝐴  ↔  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) ) | 
						
							| 92 | 90 91 | syl5ibrcom | ⊢ ( 𝑎  ∈  ( 0 (,] 1 )  →  ( 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  𝐹  ∈  𝐴 ) ) | 
						
							| 93 | 92 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 94 | 1 2 3 | padicabvcxp | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑎  ∈  ℝ+ )  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) | 
						
							| 95 | 94 | ancoms | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑝  ∈  ℙ )  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) | 
						
							| 96 |  | eleq1 | ⊢ ( 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  ( 𝐹  ∈  𝐴  ↔  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∈  𝐴 ) ) | 
						
							| 97 | 95 96 | syl5ibrcom | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑝  ∈  ℙ )  →  ( 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  𝐹  ∈  𝐴 ) ) | 
						
							| 98 | 97 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑝  ∈  ℙ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 99 | 54 98 | sylbi | ⊢ ( ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 100 | 83 93 99 | 3jaoi | ⊢ ( ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 101 | 77 100 | impbii | ⊢ ( 𝐹  ∈  𝐴  ↔  ( 𝐹  =  𝐾  ∨  ∃ 𝑎  ∈  ( 0 (,] 1 ) 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) )  ∨  ∃ 𝑎  ∈  ℝ+ ∃ 𝑔  ∈  ran  𝐽 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |