Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|
2 |
|
qabsabv.a |
|
3 |
|
padic.j |
|
4 |
|
ostth.k |
|
5 |
|
simpl |
|
6 |
|
1re |
|
7 |
6
|
ltnri |
|
8 |
|
ax-1ne0 |
|
9 |
1
|
qrng1 |
|
10 |
1
|
qrng0 |
|
11 |
2 9 10
|
abv1z |
|
12 |
8 11
|
mpan2 |
|
13 |
12
|
breq2d |
|
14 |
7 13
|
mtbiri |
|
15 |
14
|
adantr |
|
16 |
|
simprr |
|
17 |
|
fveq2 |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
syl5ibcom |
|
20 |
15 19
|
mtod |
|
21 |
|
simprl |
|
22 |
|
elnn1uz2 |
|
23 |
21 22
|
sylib |
|
24 |
23
|
ord |
|
25 |
20 24
|
mpd |
|
26 |
|
eqid |
|
27 |
1 2 3 4 5 25 16 26
|
ostth2 |
|
28 |
27
|
rexlimdvaa |
|
29 |
|
3mix2 |
|
30 |
28 29
|
syl6 |
|
31 |
|
ralnex |
|
32 |
|
simpll |
|
33 |
|
simplr |
|
34 |
|
fveq2 |
|
35 |
34
|
breq2d |
|
36 |
35
|
notbid |
|
37 |
36
|
cbvralvw |
|
38 |
33 37
|
sylib |
|
39 |
|
simprl |
|
40 |
|
simprr |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 2 3 4 32 38 39 40 41 42
|
ostth3 |
|
44 |
43
|
expr |
|
45 |
44
|
reximdva |
|
46 |
1 2 3
|
padicabvf |
|
47 |
|
ffn |
|
48 |
|
fveq1 |
|
49 |
48
|
oveq1d |
|
50 |
49
|
mpteq2dv |
|
51 |
50
|
eqeq2d |
|
52 |
51
|
rexrn |
|
53 |
46 47 52
|
mp2b |
|
54 |
53
|
rexbii |
|
55 |
|
rexcom |
|
56 |
54 55
|
bitri |
|
57 |
|
3mix3 |
|
58 |
56 57
|
sylbir |
|
59 |
45 58
|
syl6 |
|
60 |
|
ralnex |
|
61 |
|
simpl |
|
62 |
|
simprl |
|
63 |
62 37
|
sylib |
|
64 |
|
simprr |
|
65 |
|
fveq2 |
|
66 |
65
|
breq1d |
|
67 |
66
|
notbid |
|
68 |
67
|
cbvralvw |
|
69 |
64 68
|
sylib |
|
70 |
1 2 3 4 61 63 69
|
ostth1 |
|
71 |
70
|
3mix1d |
|
72 |
71
|
expr |
|
73 |
60 72
|
syl5bir |
|
74 |
59 73
|
pm2.61d |
|
75 |
74
|
ex |
|
76 |
31 75
|
syl5bir |
|
77 |
30 76
|
pm2.61d |
|
78 |
|
id |
|
79 |
1
|
qdrng |
|
80 |
1
|
qrngbas |
|
81 |
2 80 10 4
|
abvtriv |
|
82 |
79 81
|
ax-mp |
|
83 |
78 82
|
eqeltrdi |
|
84 |
1 2
|
qabsabv |
|
85 |
|
fvres |
|
86 |
85
|
oveq1d |
|
87 |
86
|
mpteq2ia |
|
88 |
87
|
eqcomi |
|
89 |
2 80 88
|
abvcxp |
|
90 |
84 89
|
mpan |
|
91 |
|
eleq1 |
|
92 |
90 91
|
syl5ibrcom |
|
93 |
92
|
rexlimiv |
|
94 |
1 2 3
|
padicabvcxp |
|
95 |
94
|
ancoms |
|
96 |
|
eleq1 |
|
97 |
95 96
|
syl5ibrcom |
|
98 |
97
|
rexlimivv |
|
99 |
54 98
|
sylbi |
|
100 |
83 93 99
|
3jaoi |
|
101 |
77 100
|
impbii |
|