Description: - Lemma for ostth : trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If F is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul of the absolute value, F is equal to 1 on all the integers, and ostthlem1 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qrng.q | |
|
qabsabv.a | |
||
padic.j | |
||
ostth.k | |
||
ostth.1 | |
||
ostth1.2 | |
||
ostth1.3 | |
||
Assertion | ostth1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | |
|
2 | qabsabv.a | |
|
3 | padic.j | |
|
4 | ostth.k | |
|
5 | ostth.1 | |
|
6 | ostth1.2 | |
|
7 | ostth1.3 | |
|
8 | 1 | qdrng | |
9 | 1 | qrngbas | |
10 | 1 | qrng0 | |
11 | 2 9 10 4 | abvtriv | |
12 | 8 11 | mp1i | |
13 | 7 | r19.21bi | |
14 | prmnn | |
|
15 | 6 | r19.21bi | |
16 | 14 15 | sylan2 | |
17 | nnq | |
|
18 | 14 17 | syl | |
19 | 2 9 | abvcl | |
20 | 5 18 19 | syl2an | |
21 | 1re | |
|
22 | lttri3 | |
|
23 | 20 21 22 | sylancl | |
24 | 13 16 23 | mpbir2and | |
25 | 14 | adantl | |
26 | eqeq1 | |
|
27 | 26 | ifbid | |
28 | c0ex | |
|
29 | 1ex | |
|
30 | 28 29 | ifex | |
31 | 27 4 30 | fvmpt | |
32 | 17 31 | syl | |
33 | nnne0 | |
|
34 | 33 | neneqd | |
35 | 34 | iffalsed | |
36 | 32 35 | eqtrd | |
37 | 25 36 | syl | |
38 | 24 37 | eqtr4d | |
39 | 1 2 5 12 38 | ostthlem2 | |