| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 |  | ostth.k |  |-  K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) | 
						
							| 5 |  | ostth.1 |  |-  ( ph -> F e. A ) | 
						
							| 6 |  | ostth1.2 |  |-  ( ph -> A. n e. NN -. 1 < ( F ` n ) ) | 
						
							| 7 |  | ostth1.3 |  |-  ( ph -> A. n e. Prime -. ( F ` n ) < 1 ) | 
						
							| 8 | 1 | qdrng |  |-  Q e. DivRing | 
						
							| 9 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 10 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 11 | 2 9 10 4 | abvtriv |  |-  ( Q e. DivRing -> K e. A ) | 
						
							| 12 | 8 11 | mp1i |  |-  ( ph -> K e. A ) | 
						
							| 13 | 7 | r19.21bi |  |-  ( ( ph /\ n e. Prime ) -> -. ( F ` n ) < 1 ) | 
						
							| 14 |  | prmnn |  |-  ( n e. Prime -> n e. NN ) | 
						
							| 15 | 6 | r19.21bi |  |-  ( ( ph /\ n e. NN ) -> -. 1 < ( F ` n ) ) | 
						
							| 16 | 14 15 | sylan2 |  |-  ( ( ph /\ n e. Prime ) -> -. 1 < ( F ` n ) ) | 
						
							| 17 |  | nnq |  |-  ( n e. NN -> n e. QQ ) | 
						
							| 18 | 14 17 | syl |  |-  ( n e. Prime -> n e. QQ ) | 
						
							| 19 | 2 9 | abvcl |  |-  ( ( F e. A /\ n e. QQ ) -> ( F ` n ) e. RR ) | 
						
							| 20 | 5 18 19 | syl2an |  |-  ( ( ph /\ n e. Prime ) -> ( F ` n ) e. RR ) | 
						
							| 21 |  | 1re |  |-  1 e. RR | 
						
							| 22 |  | lttri3 |  |-  ( ( ( F ` n ) e. RR /\ 1 e. RR ) -> ( ( F ` n ) = 1 <-> ( -. ( F ` n ) < 1 /\ -. 1 < ( F ` n ) ) ) ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( ( ph /\ n e. Prime ) -> ( ( F ` n ) = 1 <-> ( -. ( F ` n ) < 1 /\ -. 1 < ( F ` n ) ) ) ) | 
						
							| 24 | 13 16 23 | mpbir2and |  |-  ( ( ph /\ n e. Prime ) -> ( F ` n ) = 1 ) | 
						
							| 25 | 14 | adantl |  |-  ( ( ph /\ n e. Prime ) -> n e. NN ) | 
						
							| 26 |  | eqeq1 |  |-  ( x = n -> ( x = 0 <-> n = 0 ) ) | 
						
							| 27 | 26 | ifbid |  |-  ( x = n -> if ( x = 0 , 0 , 1 ) = if ( n = 0 , 0 , 1 ) ) | 
						
							| 28 |  | c0ex |  |-  0 e. _V | 
						
							| 29 |  | 1ex |  |-  1 e. _V | 
						
							| 30 | 28 29 | ifex |  |-  if ( n = 0 , 0 , 1 ) e. _V | 
						
							| 31 | 27 4 30 | fvmpt |  |-  ( n e. QQ -> ( K ` n ) = if ( n = 0 , 0 , 1 ) ) | 
						
							| 32 | 17 31 | syl |  |-  ( n e. NN -> ( K ` n ) = if ( n = 0 , 0 , 1 ) ) | 
						
							| 33 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 34 | 33 | neneqd |  |-  ( n e. NN -> -. n = 0 ) | 
						
							| 35 | 34 | iffalsed |  |-  ( n e. NN -> if ( n = 0 , 0 , 1 ) = 1 ) | 
						
							| 36 | 32 35 | eqtrd |  |-  ( n e. NN -> ( K ` n ) = 1 ) | 
						
							| 37 | 25 36 | syl |  |-  ( ( ph /\ n e. Prime ) -> ( K ` n ) = 1 ) | 
						
							| 38 | 24 37 | eqtr4d |  |-  ( ( ph /\ n e. Prime ) -> ( F ` n ) = ( K ` n ) ) | 
						
							| 39 | 1 2 5 12 38 | ostthlem2 |  |-  ( ph -> F = K ) |