| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth1.2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 7 |  | ostth1.3 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℙ ¬  ( 𝐹 ‘ 𝑛 )  <  1 ) | 
						
							| 8 | 1 | qdrng | ⊢ 𝑄  ∈  DivRing | 
						
							| 9 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 10 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 11 | 2 9 10 4 | abvtriv | ⊢ ( 𝑄  ∈  DivRing  →  𝐾  ∈  𝐴 ) | 
						
							| 12 | 8 11 | mp1i | ⊢ ( 𝜑  →  𝐾  ∈  𝐴 ) | 
						
							| 13 | 7 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ¬  ( 𝐹 ‘ 𝑛 )  <  1 ) | 
						
							| 14 |  | prmnn | ⊢ ( 𝑛  ∈  ℙ  →  𝑛  ∈  ℕ ) | 
						
							| 15 | 6 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 16 | 14 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 17 |  | nnq | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℚ ) | 
						
							| 18 | 14 17 | syl | ⊢ ( 𝑛  ∈  ℙ  →  𝑛  ∈  ℚ ) | 
						
							| 19 | 2 9 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑛  ∈  ℚ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 20 | 5 18 19 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 21 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 22 |  | lttri3 | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 )  =  1  ↔  ( ¬  ( 𝐹 ‘ 𝑛 )  <  1  ∧  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 23 | 20 21 22 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( ( 𝐹 ‘ 𝑛 )  =  1  ↔  ( ¬  ( 𝐹 ‘ 𝑛 )  <  1  ∧  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 24 | 13 16 23 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( 𝐹 ‘ 𝑛 )  =  1 ) | 
						
							| 25 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  𝑛  ∈  ℕ ) | 
						
							| 26 |  | eqeq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 27 | 26 | ifbid | ⊢ ( 𝑥  =  𝑛  →  if ( 𝑥  =  0 ,  0 ,  1 )  =  if ( 𝑛  =  0 ,  0 ,  1 ) ) | 
						
							| 28 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 29 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 30 | 28 29 | ifex | ⊢ if ( 𝑛  =  0 ,  0 ,  1 )  ∈  V | 
						
							| 31 | 27 4 30 | fvmpt | ⊢ ( 𝑛  ∈  ℚ  →  ( 𝐾 ‘ 𝑛 )  =  if ( 𝑛  =  0 ,  0 ,  1 ) ) | 
						
							| 32 | 17 31 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐾 ‘ 𝑛 )  =  if ( 𝑛  =  0 ,  0 ,  1 ) ) | 
						
							| 33 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 34 | 33 | neneqd | ⊢ ( 𝑛  ∈  ℕ  →  ¬  𝑛  =  0 ) | 
						
							| 35 | 34 | iffalsed | ⊢ ( 𝑛  ∈  ℕ  →  if ( 𝑛  =  0 ,  0 ,  1 )  =  1 ) | 
						
							| 36 | 32 35 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐾 ‘ 𝑛 )  =  1 ) | 
						
							| 37 | 25 36 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( 𝐾 ‘ 𝑛 )  =  1 ) | 
						
							| 38 | 24 37 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑛 ) ) | 
						
							| 39 | 1 2 5 12 38 | ostthlem2 | ⊢ ( 𝜑  →  𝐹  =  𝐾 ) |