| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth2.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | ostth2.3 | ⊢ ( 𝜑  →  1  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 8 |  | ostth2.4 | ⊢ 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) ) | 
						
							| 9 |  | ostth2.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 10 |  | ostth2.6 | ⊢ 𝑆  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) | 
						
							| 11 |  | ostth2.7 | ⊢ 𝑇  =  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑀 ↑ 𝑥 )  =  ( 𝑀 ↑ 0 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑀 ↑ 𝑥 )  −  1 )  =  ( ( 𝑀 ↑ 0 )  −  1 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑥  =  0  →  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) )  =  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  0 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑇 ↑ 𝑥 )  =  ( 𝑇 ↑ 0 ) ) | 
						
							| 17 | 15 16 | oveq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  =  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑥  =  0  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) | 
						
							| 19 | 14 18 | raleqbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) ) )  ↔  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑀 ↑ 𝑥 )  =  ( 𝑀 ↑ 𝑛 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑀 ↑ 𝑥 )  −  1 )  =  ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑥  =  𝑛  →  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) )  =  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  𝑛 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑇 ↑ 𝑥 )  =  ( 𝑇 ↑ 𝑛 ) ) | 
						
							| 26 | 24 25 | oveq12d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  =  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 28 | 23 27 | raleqbidv | ⊢ ( 𝑥  =  𝑛  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) ) )  ↔  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑀 ↑ 𝑥 )  =  ( 𝑀 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝑀 ↑ 𝑥 )  −  1 )  =  ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) )  =  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑇 ↑ 𝑥 )  =  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 35 | 33 34 | oveq12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  =  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 36 | 35 | breq2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 37 | 32 36 | raleqbidv | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 38 | 37 | imbi2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) ) )  ↔  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑀 ↑ 𝑥 )  =  ( 𝑀 ↑ 𝑋 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑀 ↑ 𝑥 )  −  1 )  =  ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) )  =  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑀  ·  𝑥 )  =  ( 𝑀  ·  𝑋 ) ) | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑇 ↑ 𝑥 )  =  ( 𝑇 ↑ 𝑋 ) ) | 
						
							| 44 | 42 43 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  =  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) | 
						
							| 45 | 44 | breq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 46 | 41 45 | raleqbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) )  ↔  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 47 | 46 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑥 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑥 )  ·  ( 𝑇 ↑ 𝑥 ) ) )  ↔  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) ) | 
						
							| 48 |  | eluz2nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℕ ) | 
						
							| 49 | 9 48 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 50 | 49 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 51 | 50 | exp0d | ⊢ ( 𝜑  →  ( 𝑀 ↑ 0 )  =  1 ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 0 )  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 53 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 54 | 52 53 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 0 )  −  1 )  =  0 ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) )  =  ( 0 ... 0 ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) )  ↔  𝑘  ∈  ( 0 ... 0 ) ) ) | 
						
							| 57 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  0  ≤  0 ) | 
						
							| 59 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 60 | 2 59 | abv0 | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 61 | 5 60 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 62 | 50 | mul01d | ⊢ ( 𝜑  →  ( 𝑀  ·  0 )  =  0 ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) )  =  ( 0  ·  ( 𝑇 ↑ 0 ) ) ) | 
						
							| 64 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 65 |  | nnq | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℚ ) | 
						
							| 66 | 49 65 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℚ ) | 
						
							| 67 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 68 | 2 67 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑀  ∈  ℚ )  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 69 | 5 66 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 70 |  | ifcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑀 )  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 71 | 64 69 70 | sylancr | ⊢ ( 𝜑  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 72 | 11 71 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 73 | 72 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 74 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 75 |  | expcl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  0  ∈  ℕ0 )  →  ( 𝑇 ↑ 0 )  ∈  ℂ ) | 
						
							| 76 | 73 74 75 | sylancl | ⊢ ( 𝜑  →  ( 𝑇 ↑ 0 )  ∈  ℂ ) | 
						
							| 77 | 76 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ( 𝑇 ↑ 0 ) )  =  0 ) | 
						
							| 78 | 63 77 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) )  =  0 ) | 
						
							| 79 | 58 61 78 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) | 
						
							| 80 |  | elfz1eq | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  𝑘  =  0 ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 82 | 81 | breq1d | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) )  ↔  ( 𝐹 ‘ 0 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) | 
						
							| 83 | 79 82 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 0 )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) | 
						
							| 84 | 56 83 | sylbid | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) ) | 
						
							| 85 | 84 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 0 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  0 )  ·  ( 𝑇 ↑ 0 ) ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 87 | 86 | breq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  ↔  ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 88 | 87 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  ↔  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 89 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 90 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 91 | 90 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 92 |  | zq | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℚ ) | 
						
							| 93 | 91 92 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  ∈  ℚ ) | 
						
							| 94 | 2 67 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑘  ∈  ℚ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 95 | 89 93 94 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 96 | 49 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 97 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 98 | 96 97 | nnexpcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 99 | 91 98 | zmodcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℕ0 ) | 
						
							| 100 | 99 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℤ ) | 
						
							| 101 |  | zq | ⊢ ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℤ  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℚ ) | 
						
							| 102 | 100 101 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℚ ) | 
						
							| 103 | 2 67 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℚ )  →  ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 104 | 89 102 103 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 105 | 96 65 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℚ ) | 
						
							| 106 | 89 105 68 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 107 | 106 97 | reexpcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 108 | 91 | zred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 109 | 108 98 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 110 | 109 | flcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℤ ) | 
						
							| 111 |  | zq | ⊢ ( ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℤ  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℚ ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℚ ) | 
						
							| 113 | 2 67 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℚ )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 114 | 89 112 113 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 115 | 107 114 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 116 | 104 115 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 117 | 96 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 118 |  | nn0p1nn | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 119 | 118 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 120 | 119 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 121 | 117 120 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 122 | 72 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 123 |  | peano2nn0 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 124 | 123 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 125 | 122 124 | reexpcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑇 ↑ ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 126 | 121 125 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 127 |  | nnq | ⊢ ( ( 𝑀 ↑ 𝑛 )  ∈  ℕ  →  ( 𝑀 ↑ 𝑛 )  ∈  ℚ ) | 
						
							| 128 | 98 127 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℚ ) | 
						
							| 129 |  | qmulcl | ⊢ ( ( ( 𝑀 ↑ 𝑛 )  ∈  ℚ  ∧  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℚ )  →  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℚ ) | 
						
							| 130 | 128 112 129 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℚ ) | 
						
							| 131 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 132 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 133 | 1 132 | ressplusg | ⊢ ( ℚ  ∈  V  →   +   =  ( +g ‘ 𝑄 ) ) | 
						
							| 134 | 131 133 | ax-mp | ⊢  +   =  ( +g ‘ 𝑄 ) | 
						
							| 135 | 2 67 134 | abvtri | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ℚ  ∧  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ≤  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) | 
						
							| 136 | 89 102 130 135 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ≤  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) | 
						
							| 137 | 98 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℝ+ ) | 
						
							| 138 |  | modval | ⊢ ( ( 𝑘  ∈  ℝ  ∧  ( 𝑀 ↑ 𝑛 )  ∈  ℝ+ )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  =  ( 𝑘  −  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 139 | 108 137 138 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  =  ( 𝑘  −  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 140 | 139 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( 𝑘  −  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 141 | 108 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 142 |  | qcn | ⊢ ( ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℚ  →  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 143 | 130 142 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 144 | 141 143 | npcand | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑘  −  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  𝑘 ) | 
						
							| 145 | 140 144 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  𝑘 ) | 
						
							| 146 | 145 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  +  ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 147 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 148 | 1 147 | ressmulr | ⊢ ( ℚ  ∈  V  →   ·   =  ( .r ‘ 𝑄 ) ) | 
						
							| 149 | 131 148 | ax-mp | ⊢  ·   =  ( .r ‘ 𝑄 ) | 
						
							| 150 | 2 67 149 | abvmul | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑀 ↑ 𝑛 )  ∈  ℚ  ∧  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 151 | 89 128 112 150 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 152 | 1 2 | qabvexp | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑀  ∈  ℚ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) | 
						
							| 153 | 89 105 97 152 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) )  =  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) | 
						
							| 154 | 153 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 155 | 151 154 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 156 | 155 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 )  ·  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) | 
						
							| 157 | 136 146 156 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) | 
						
							| 158 | 122 97 | reexpcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑇 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 159 | 121 158 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 160 |  | nn0re | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ ) | 
						
							| 161 | 160 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 162 | 117 161 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  𝑛 )  ∈  ℝ ) | 
						
							| 163 | 162 158 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 164 | 117 158 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 165 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) ) ) | 
						
							| 166 | 165 | breq1d | ⊢ ( 𝑗  =  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  ↔  ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 167 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 168 |  | zmodfz | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀 ↑ 𝑛 )  ∈  ℕ )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ) | 
						
							| 169 | 91 98 168 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) )  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ) | 
						
							| 170 | 166 167 169 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 171 | 117 107 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 172 | 107 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 173 | 114 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 174 | 172 173 | mulcomd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  =  ( ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) | 
						
							| 175 | 2 67 | abvge0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑀  ∈  ℚ )  →  0  ≤  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 176 | 89 105 175 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  ≤  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 177 | 106 97 176 | expge0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  ≤  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) | 
						
							| 178 | 110 | zred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 179 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  →  0  ≤  𝑘 ) | 
						
							| 180 | 179 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  ≤  𝑘 ) | 
						
							| 181 | 98 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 182 | 98 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  <  ( 𝑀 ↑ 𝑛 ) ) | 
						
							| 183 |  | divge0 | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  ≤  𝑘 )  ∧  ( ( 𝑀 ↑ 𝑛 )  ∈  ℝ  ∧  0  <  ( 𝑀 ↑ 𝑛 ) ) )  →  0  ≤  ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 184 | 108 180 181 182 183 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  ≤  ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) | 
						
							| 185 |  | flge0nn0 | ⊢ ( ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  ∈  ℝ  ∧  0  ≤  ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℕ0 ) | 
						
							| 186 | 109 184 185 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℕ0 ) | 
						
							| 187 | 1 2 | qabvle | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ∈  ℕ0 )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ≤  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) | 
						
							| 188 | 89 186 187 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ≤  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) | 
						
							| 189 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ) | 
						
							| 190 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 191 | 96 124 | nnexpcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 192 | 191 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 193 |  | elfzm11 | ⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑀 ↑ ( 𝑛  +  1 ) )  ∈  ℤ )  →  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ↔  ( 𝑘  ∈  ℤ  ∧  0  ≤  𝑘  ∧  𝑘  <  ( 𝑀 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 194 | 190 192 193 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ↔  ( 𝑘  ∈  ℤ  ∧  0  ≤  𝑘  ∧  𝑘  <  ( 𝑀 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 195 | 189 194 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  ∈  ℤ  ∧  0  ≤  𝑘  ∧  𝑘  <  ( 𝑀 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 196 | 195 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  <  ( 𝑀 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 197 | 96 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℂ ) | 
						
							| 198 | 197 97 | expp1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀 ↑ ( 𝑛  +  1 ) )  =  ( ( 𝑀 ↑ 𝑛 )  ·  𝑀 ) ) | 
						
							| 199 | 196 198 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑘  <  ( ( 𝑀 ↑ 𝑛 )  ·  𝑀 ) ) | 
						
							| 200 |  | ltdivmul | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( ( 𝑀 ↑ 𝑛 )  ∈  ℝ  ∧  0  <  ( 𝑀 ↑ 𝑛 ) ) )  →  ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  <  𝑀  ↔  𝑘  <  ( ( 𝑀 ↑ 𝑛 )  ·  𝑀 ) ) ) | 
						
							| 201 | 108 117 181 182 200 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  <  𝑀  ↔  𝑘  <  ( ( 𝑀 ↑ 𝑛 )  ·  𝑀 ) ) ) | 
						
							| 202 | 199 201 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  <  𝑀 ) | 
						
							| 203 | 96 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 204 |  | fllt | ⊢ ( ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  ∈  ℝ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  <  𝑀  ↔  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  <  𝑀 ) ) | 
						
							| 205 | 109 203 204 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) )  <  𝑀  ↔  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  <  𝑀 ) ) | 
						
							| 206 | 202 205 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  <  𝑀 ) | 
						
							| 207 | 178 117 206 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) )  ≤  𝑀 ) | 
						
							| 208 | 114 178 117 188 207 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ≤  𝑀 ) | 
						
							| 209 | 114 117 107 177 208 | lemul1ad | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) )  ≤  ( 𝑀  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) | 
						
							| 210 | 174 209 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  ≤  ( 𝑀  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) | 
						
							| 211 | 96 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 212 | 211 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  ≤  𝑀 ) | 
						
							| 213 |  | max1 | ⊢ ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐹 ‘ 𝑀 )  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 214 | 106 64 213 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑀 )  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 215 | 214 11 | breqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑀 )  ≤  𝑇 ) | 
						
							| 216 |  | leexp1a | ⊢ ( ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  𝑇  ∈  ℝ  ∧  𝑛  ∈  ℕ0 )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑀 )  ∧  ( 𝐹 ‘ 𝑀 )  ≤  𝑇 ) )  →  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ≤  ( 𝑇 ↑ 𝑛 ) ) | 
						
							| 217 | 106 122 97 176 215 216 | syl32anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ≤  ( 𝑇 ↑ 𝑛 ) ) | 
						
							| 218 | 107 158 117 212 217 | lemul2ad | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) )  ≤  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 219 | 115 171 164 210 218 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) )  ≤  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 220 | 104 115 163 164 170 219 | le2addd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ≤  ( ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  +  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 221 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 222 | 221 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 223 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  1  ∈  ℂ ) | 
						
							| 224 | 197 222 223 | adddid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( 𝑛  +  1 ) )  =  ( ( 𝑀  ·  𝑛 )  +  ( 𝑀  ·  1 ) ) ) | 
						
							| 225 | 197 | mulridd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  1 )  =  𝑀 ) | 
						
							| 226 | 225 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  𝑛 )  +  ( 𝑀  ·  1 ) )  =  ( ( 𝑀  ·  𝑛 )  +  𝑀 ) ) | 
						
							| 227 | 224 226 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( 𝑛  +  1 ) )  =  ( ( 𝑀  ·  𝑛 )  +  𝑀 ) ) | 
						
							| 228 | 227 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  =  ( ( ( 𝑀  ·  𝑛 )  +  𝑀 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 229 | 197 222 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  𝑛 )  ∈  ℂ ) | 
						
							| 230 | 158 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑇 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 231 | 229 197 230 | adddird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( ( 𝑀  ·  𝑛 )  +  𝑀 )  ·  ( 𝑇 ↑ 𝑛 ) )  =  ( ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  +  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 232 | 228 231 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  =  ( ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  +  ( 𝑀  ·  ( 𝑇 ↑ 𝑛 ) ) ) ) | 
						
							| 233 | 220 232 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) ) ) | 
						
							| 234 |  | max2 | ⊢ ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 235 | 106 64 234 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 236 | 235 11 | breqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  1  ≤  𝑇 ) | 
						
							| 237 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 238 | 237 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 239 |  | uzid | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 240 | 238 239 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 241 |  | peano2uz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 242 | 240 241 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 243 | 122 236 242 | leexp2ad | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑇 ↑ 𝑛 )  ≤  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 244 | 96 119 | nnmulcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝑀  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 245 | 244 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  0  <  ( 𝑀  ·  ( 𝑛  +  1 ) ) ) | 
						
							| 246 |  | lemul2 | ⊢ ( ( ( 𝑇 ↑ 𝑛 )  ∈  ℝ  ∧  ( 𝑇 ↑ ( 𝑛  +  1 ) )  ∈  ℝ  ∧  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ∈  ℝ  ∧  0  <  ( 𝑀  ·  ( 𝑛  +  1 ) ) ) )  →  ( ( 𝑇 ↑ 𝑛 )  ≤  ( 𝑇 ↑ ( 𝑛  +  1 ) )  ↔  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 247 | 158 125 121 245 246 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑇 ↑ 𝑛 )  ≤  ( 𝑇 ↑ ( 𝑛  +  1 ) )  ↔  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 248 | 243 247 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ 𝑛 ) )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 249 | 116 159 126 233 248 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑘  mod  ( 𝑀 ↑ 𝑛 ) ) )  +  ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 )  ·  ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘  /  ( 𝑀 ↑ 𝑛 ) ) ) ) ) )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 250 | 95 116 126 157 249 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) )  ∧  ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 251 | 250 | expr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 252 | 251 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑗  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑗 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 253 | 88 252 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 254 | 253 | expcom | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝜑  →  ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) )  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 255 | 254 | a2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑛 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑛 )  ·  ( 𝑇 ↑ 𝑛 ) ) )  →  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ ( 𝑛  +  1 ) )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  ( 𝑛  +  1 ) )  ·  ( 𝑇 ↑ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 256 | 20 29 38 47 85 255 | nn0ind | ⊢ ( 𝑋  ∈  ℕ0  →  ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 257 | 256 | impcom | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ0 )  →  ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) | 
						
							| 258 |  | fveq2 | ⊢ ( 𝑘  =  𝑌  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 259 | 258 | breq1d | ⊢ ( 𝑘  =  𝑌  →  ( ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) )  ↔  ( 𝐹 ‘ 𝑌 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 260 | 259 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) ( 𝐹 ‘ 𝑘 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) )  →  ( 𝑌  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) )  →  ( 𝐹 ‘ 𝑌 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 261 | 257 260 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ0 )  →  ( 𝑌  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) )  →  ( 𝐹 ‘ 𝑌 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) ) | 
						
							| 262 | 261 | 3impia | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ0  ∧  𝑌  ∈  ( 0 ... ( ( 𝑀 ↑ 𝑋 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑌 )  ≤  ( ( 𝑀  ·  𝑋 )  ·  ( 𝑇 ↑ 𝑋 ) ) ) |