Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
6 |
|
ostth2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
|
ostth2.3 |
⊢ ( 𝜑 → 1 < ( 𝐹 ‘ 𝑁 ) ) |
8 |
|
ostth2.4 |
⊢ 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) |
9 |
|
ostth2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
|
ostth2.6 |
⊢ 𝑆 = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) |
11 |
|
ostth2.7 |
⊢ 𝑇 = if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑀 ↑ 𝑥 ) = ( 𝑀 ↑ 0 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑀 ↑ 𝑥 ) − 1 ) = ( ( 𝑀 ↑ 0 ) − 1 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) = ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 0 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑇 ↑ 𝑥 ) = ( 𝑇 ↑ 0 ) ) |
17 |
15 16
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) = ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) |
18 |
17
|
breq2d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) |
19 |
14 18
|
raleqbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑀 ↑ 𝑥 ) = ( 𝑀 ↑ 𝑛 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 ↑ 𝑥 ) − 1 ) = ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) = ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑛 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑇 ↑ 𝑥 ) = ( 𝑇 ↑ 𝑛 ) ) |
26 |
24 25
|
oveq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) = ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) |
28 |
23 27
|
raleqbidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑀 ↑ 𝑥 ) = ( 𝑀 ↑ ( 𝑛 + 1 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑀 ↑ 𝑥 ) − 1 ) = ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) = ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑀 · 𝑥 ) = ( 𝑀 · ( 𝑛 + 1 ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑇 ↑ 𝑥 ) = ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) |
35 |
33 34
|
oveq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) = ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) |
36 |
35
|
breq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
37 |
32 36
|
raleqbidv |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
38 |
37
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) ) |
39 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 ↑ 𝑥 ) = ( 𝑀 ↑ 𝑋 ) ) |
40 |
39
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑀 ↑ 𝑥 ) − 1 ) = ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) = ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 · 𝑥 ) = ( 𝑀 · 𝑋 ) ) |
43 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑇 ↑ 𝑥 ) = ( 𝑇 ↑ 𝑋 ) ) |
44 |
42 43
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) = ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) |
45 |
44
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
46 |
41 45
|
raleqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
47 |
46
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑥 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑥 ) · ( 𝑇 ↑ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) ) |
48 |
|
eluz2nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℕ ) |
49 |
9 48
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
50 |
49
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
51 |
50
|
exp0d |
⊢ ( 𝜑 → ( 𝑀 ↑ 0 ) = 1 ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 0 ) − 1 ) = ( 1 − 1 ) ) |
53 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
54 |
52 53
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 0 ) − 1 ) = 0 ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) = ( 0 ... 0 ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) ↔ 𝑘 ∈ ( 0 ... 0 ) ) ) |
57 |
|
0le0 |
⊢ 0 ≤ 0 |
58 |
57
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
59 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
60 |
2 59
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
61 |
5 60
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
62 |
50
|
mul01d |
⊢ ( 𝜑 → ( 𝑀 · 0 ) = 0 ) |
63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) = ( 0 · ( 𝑇 ↑ 0 ) ) ) |
64 |
|
1re |
⊢ 1 ∈ ℝ |
65 |
|
nnq |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℚ ) |
66 |
49 65
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℚ ) |
67 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
68 |
2 67
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
69 |
5 66 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
70 |
|
ifcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
71 |
64 69 70
|
sylancr |
⊢ ( 𝜑 → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
72 |
11 71
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
73 |
72
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
74 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
75 |
|
expcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝑇 ↑ 0 ) ∈ ℂ ) |
76 |
73 74 75
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ↑ 0 ) ∈ ℂ ) |
77 |
76
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝑇 ↑ 0 ) ) = 0 ) |
78 |
63 77
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) = 0 ) |
79 |
58 61 78
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) |
80 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) |
81 |
80
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
82 |
81
|
breq1d |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ↔ ( 𝐹 ‘ 0 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) |
83 |
79 82
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 0 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) |
84 |
56 83
|
sylbid |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) ) |
85 |
84
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 0 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 0 ) · ( 𝑇 ↑ 0 ) ) ) |
86 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
87 |
86
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ↔ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) |
88 |
87
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ↔ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) |
89 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝐹 ∈ 𝐴 ) |
90 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) → 𝑘 ∈ ℤ ) |
91 |
90
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 ∈ ℤ ) |
92 |
|
zq |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℚ ) |
93 |
91 92
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 ∈ ℚ ) |
94 |
2 67
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑘 ∈ ℚ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
95 |
89 93 94
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
96 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℕ ) |
97 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
98 |
96 97
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ 𝑛 ) ∈ ℕ ) |
99 |
91 98
|
zmodcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℕ0 ) |
100 |
99
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℤ ) |
101 |
|
zq |
⊢ ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℤ → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℚ ) |
102 |
100 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℚ ) |
103 |
2 67
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℚ ) → ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℝ ) |
104 |
89 102 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℝ ) |
105 |
96 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℚ ) |
106 |
89 105 68
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
107 |
106 97
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ∈ ℝ ) |
108 |
91
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 ∈ ℝ ) |
109 |
108 98
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ∈ ℝ ) |
110 |
109
|
flcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℤ ) |
111 |
|
zq |
⊢ ( ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℤ → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℚ ) |
112 |
110 111
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℚ ) |
113 |
2 67
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℚ ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℝ ) |
114 |
89 112 113
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℝ ) |
115 |
107 114
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ∈ ℝ ) |
116 |
104 115
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ∈ ℝ ) |
117 |
96
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℝ ) |
118 |
|
nn0p1nn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) |
119 |
118
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
120 |
119
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
121 |
117 120
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( 𝑛 + 1 ) ) ∈ ℝ ) |
122 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑇 ∈ ℝ ) |
123 |
|
peano2nn0 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) |
124 |
123
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
125 |
122 124
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑇 ↑ ( 𝑛 + 1 ) ) ∈ ℝ ) |
126 |
121 125
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
127 |
|
nnq |
⊢ ( ( 𝑀 ↑ 𝑛 ) ∈ ℕ → ( 𝑀 ↑ 𝑛 ) ∈ ℚ ) |
128 |
98 127
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ 𝑛 ) ∈ ℚ ) |
129 |
|
qmulcl |
⊢ ( ( ( 𝑀 ↑ 𝑛 ) ∈ ℚ ∧ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℚ ) → ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℚ ) |
130 |
128 112 129
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℚ ) |
131 |
|
qex |
⊢ ℚ ∈ V |
132 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
133 |
1 132
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
134 |
131 133
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
135 |
2 67 134
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ℚ ∧ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) |
136 |
89 102 130 135
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) |
137 |
98
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ 𝑛 ) ∈ ℝ+ ) |
138 |
|
modval |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑀 ↑ 𝑛 ) ∈ ℝ+ ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) = ( 𝑘 − ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
139 |
108 137 138
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) = ( 𝑘 − ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
140 |
139
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( 𝑘 − ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
141 |
108
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 ∈ ℂ ) |
142 |
|
qcn |
⊢ ( ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℚ → ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℂ ) |
143 |
130 142
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℂ ) |
144 |
141 143
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑘 − ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = 𝑘 ) |
145 |
140 144
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = 𝑘 ) |
146 |
145
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) + ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
147 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
148 |
1 147
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
149 |
131 148
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
150 |
2 67 149
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑀 ↑ 𝑛 ) ∈ ℚ ∧ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
151 |
89 128 112 150
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
152 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) |
153 |
89 105 97 152
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) |
154 |
153
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 ↑ 𝑛 ) ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
155 |
151 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) |
156 |
155
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( 𝐹 ‘ ( ( 𝑀 ↑ 𝑛 ) · ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) = ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) |
157 |
136 146 156
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ) |
158 |
122 97
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℝ ) |
159 |
121 158
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) ∈ ℝ ) |
160 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
161 |
160
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℝ ) |
162 |
117 161
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · 𝑛 ) ∈ ℝ ) |
163 |
162 158
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ∈ ℝ ) |
164 |
117 158
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ∈ ℝ ) |
165 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) ) |
166 |
165
|
breq1d |
⊢ ( 𝑗 = ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ↔ ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) |
167 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) |
168 |
|
zmodfz |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ) |
169 |
91 98 168
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ) |
170 |
166 167 169
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) |
171 |
117 107
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ∈ ℝ ) |
172 |
107
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ∈ ℂ ) |
173 |
114
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ∈ ℂ ) |
174 |
172 173
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) = ( ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) |
175 |
2 67
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ) → 0 ≤ ( 𝐹 ‘ 𝑀 ) ) |
176 |
89 105 175
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑀 ) ) |
177 |
106 97 176
|
expge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) |
178 |
110
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℝ ) |
179 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) → 0 ≤ 𝑘 ) |
180 |
179
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 ≤ 𝑘 ) |
181 |
98
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ 𝑛 ) ∈ ℝ ) |
182 |
98
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 < ( 𝑀 ↑ 𝑛 ) ) |
183 |
|
divge0 |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( ( 𝑀 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 𝑀 ↑ 𝑛 ) ) ) → 0 ≤ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) |
184 |
108 180 181 182 183
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 ≤ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) |
185 |
|
flge0nn0 |
⊢ ( ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℕ0 ) |
186 |
109 184 185
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℕ0 ) |
187 |
1 2
|
qabvle |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ∈ ℕ0 ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ≤ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) |
188 |
89 186 187
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ≤ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) |
189 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ) |
190 |
|
0z |
⊢ 0 ∈ ℤ |
191 |
96 124
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ ( 𝑛 + 1 ) ) ∈ ℕ ) |
192 |
191
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ ( 𝑛 + 1 ) ) ∈ ℤ ) |
193 |
|
elfzm11 |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑀 ↑ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < ( 𝑀 ↑ ( 𝑛 + 1 ) ) ) ) ) |
194 |
190 192 193
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < ( 𝑀 ↑ ( 𝑛 + 1 ) ) ) ) ) |
195 |
189 194
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < ( 𝑀 ↑ ( 𝑛 + 1 ) ) ) ) |
196 |
195
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 < ( 𝑀 ↑ ( 𝑛 + 1 ) ) ) |
197 |
96
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℂ ) |
198 |
197 97
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 ↑ ( 𝑛 + 1 ) ) = ( ( 𝑀 ↑ 𝑛 ) · 𝑀 ) ) |
199 |
196 198
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑘 < ( ( 𝑀 ↑ 𝑛 ) · 𝑀 ) ) |
200 |
|
ltdivmul |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ( 𝑀 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 𝑀 ↑ 𝑛 ) ) ) → ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) < 𝑀 ↔ 𝑘 < ( ( 𝑀 ↑ 𝑛 ) · 𝑀 ) ) ) |
201 |
108 117 181 182 200
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) < 𝑀 ↔ 𝑘 < ( ( 𝑀 ↑ 𝑛 ) · 𝑀 ) ) ) |
202 |
199 201
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) < 𝑀 ) |
203 |
96
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℤ ) |
204 |
|
fllt |
⊢ ( ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) < 𝑀 ) ) |
205 |
109 203 204
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) < 𝑀 ) ) |
206 |
202 205
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) < 𝑀 ) |
207 |
178 117 206
|
ltled |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ≤ 𝑀 ) |
208 |
114 178 117 188 207
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ≤ 𝑀 ) |
209 |
114 117 107 177 208
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ≤ ( 𝑀 · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) |
210 |
174 209
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ≤ ( 𝑀 · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ) |
211 |
96
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑀 ∈ ℕ0 ) |
212 |
211
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 ≤ 𝑀 ) |
213 |
|
max1 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐹 ‘ 𝑀 ) ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
214 |
106 64 213
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
215 |
214 11
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ 𝑇 ) |
216 |
|
leexp1a |
⊢ ( ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑀 ) ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ≤ ( 𝑇 ↑ 𝑛 ) ) |
217 |
106 122 97 176 215 216
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ≤ ( 𝑇 ↑ 𝑛 ) ) |
218 |
107 158 117 212 217
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) ) ≤ ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ) |
219 |
115 171 164 210 218
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ≤ ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ) |
220 |
104 115 163 164 170 219
|
le2addd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ≤ ( ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) + ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ) ) |
221 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
222 |
221
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℂ ) |
223 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 1 ∈ ℂ ) |
224 |
197 222 223
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + ( 𝑀 · 1 ) ) ) |
225 |
197
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · 1 ) = 𝑀 ) |
226 |
225
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · 𝑛 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑛 ) + 𝑀 ) ) |
227 |
224 226
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( 𝑛 + 1 ) ) = ( ( 𝑀 · 𝑛 ) + 𝑀 ) ) |
228 |
227
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) = ( ( ( 𝑀 · 𝑛 ) + 𝑀 ) · ( 𝑇 ↑ 𝑛 ) ) ) |
229 |
197 222
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · 𝑛 ) ∈ ℂ ) |
230 |
158
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
231 |
229 197 230
|
adddird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( ( 𝑀 · 𝑛 ) + 𝑀 ) · ( 𝑇 ↑ 𝑛 ) ) = ( ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) + ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ) ) |
232 |
228 231
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) = ( ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) + ( 𝑀 · ( 𝑇 ↑ 𝑛 ) ) ) ) |
233 |
220 232
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) ) |
234 |
|
max2 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ 1 ∈ ℝ ) → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
235 |
106 64 234
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
236 |
235 11
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 1 ≤ 𝑇 ) |
237 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
238 |
237
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ℤ ) |
239 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
240 |
238 239
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
241 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
242 |
240 241
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
243 |
122 236 242
|
leexp2ad |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑇 ↑ 𝑛 ) ≤ ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) |
244 |
96 119
|
nnmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝑀 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
245 |
244
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → 0 < ( 𝑀 · ( 𝑛 + 1 ) ) ) |
246 |
|
lemul2 |
⊢ ( ( ( 𝑇 ↑ 𝑛 ) ∈ ℝ ∧ ( 𝑇 ↑ ( 𝑛 + 1 ) ) ∈ ℝ ∧ ( ( 𝑀 · ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑀 · ( 𝑛 + 1 ) ) ) ) → ( ( 𝑇 ↑ 𝑛 ) ≤ ( 𝑇 ↑ ( 𝑛 + 1 ) ) ↔ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
247 |
158 125 121 245 246
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑇 ↑ 𝑛 ) ≤ ( 𝑇 ↑ ( 𝑛 + 1 ) ) ↔ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
248 |
243 247
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ 𝑛 ) ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) |
249 |
116 159 126 233 248
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 mod ( 𝑀 ↑ 𝑛 ) ) ) + ( ( ( 𝐹 ‘ 𝑀 ) ↑ 𝑛 ) · ( 𝐹 ‘ ( ⌊ ‘ ( 𝑘 / ( 𝑀 ↑ 𝑛 ) ) ) ) ) ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) |
250 |
95 116 126 157 249
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ∧ ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) |
251 |
250
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ) → ( ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
252 |
251
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑗 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
253 |
88 252
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) |
254 |
253
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) ) |
255 |
254
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑛 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑛 ) · ( 𝑇 ↑ 𝑛 ) ) ) → ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ ( 𝑛 + 1 ) ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · ( 𝑛 + 1 ) ) · ( 𝑇 ↑ ( 𝑛 + 1 ) ) ) ) ) ) |
256 |
20 29 38 47 85 255
|
nn0ind |
⊢ ( 𝑋 ∈ ℕ0 → ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
257 |
256
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) |
258 |
|
fveq2 |
⊢ ( 𝑘 = 𝑌 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑌 ) ) |
259 |
258
|
breq1d |
⊢ ( 𝑘 = 𝑌 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ↔ ( 𝐹 ‘ 𝑌 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
260 |
259
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) → ( 𝑌 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) → ( 𝐹 ‘ 𝑌 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
261 |
257 260
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ0 ) → ( 𝑌 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) → ( 𝐹 ‘ 𝑌 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) ) |
262 |
261
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ( 0 ... ( ( 𝑀 ↑ 𝑋 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑌 ) ≤ ( ( 𝑀 · 𝑋 ) · ( 𝑇 ↑ 𝑋 ) ) ) |