Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
6 |
|
ostth2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
|
ostth2.3 |
⊢ ( 𝜑 → 1 < ( 𝐹 ‘ 𝑁 ) ) |
8 |
|
ostth2.4 |
⊢ 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) |
9 |
|
ostth2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
|
ostth2.6 |
⊢ 𝑆 = ( ( log ‘ ( 𝐹 ‘ 𝑀 ) ) / ( log ‘ 𝑀 ) ) |
11 |
|
ostth2.7 |
⊢ 𝑇 = if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) |
12 |
|
ostth2.8 |
⊢ 𝑈 = ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) |
13 |
|
eluz2b2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
14 |
6 13
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
16 |
|
nnq |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℚ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℚ ) |
18 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
19 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
20 |
5 17 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℂ ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
|
eluz2b2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) |
25 |
9 24
|
sylib |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
27 |
|
nnq |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℚ ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℚ ) |
29 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
30 |
5 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
31 |
|
ifcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
32 |
23 30 31
|
sylancr |
⊢ ( 𝜑 → if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ∈ ℝ ) |
33 |
11 32
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
35 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
36 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
37 |
|
0lt1 |
⊢ 0 < 1 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
39 |
|
max2 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ 1 ∈ ℝ ) → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
40 |
30 36 39
|
syl2anc |
⊢ ( 𝜑 → 1 ≤ if ( ( 𝐹 ‘ 𝑀 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑀 ) ) ) |
41 |
40 11
|
breqtrrdi |
⊢ ( 𝜑 → 1 ≤ 𝑇 ) |
42 |
35 36 33 38 41
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑇 ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < 𝑇 ) |
44 |
34 43
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑇 ∈ ℝ+ ) |
45 |
44
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 ≤ 𝑇 ) |
46 |
15
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
47 |
14
|
simprd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
48 |
46 47
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ+ ) |
49 |
26
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
50 |
25
|
simprd |
⊢ ( 𝜑 → 1 < 𝑀 ) |
51 |
49 50
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ∈ ℝ+ ) |
52 |
48 51
|
rpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ∈ ℝ+ ) |
53 |
12 52
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
54 |
53
|
rpred |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑈 ∈ ℝ ) |
56 |
34 45 55
|
recxpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 𝑈 ) ∈ ℝ ) |
57 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 𝑈 ) ∈ ℂ ) |
58 |
44 55
|
rpcxpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 𝑈 ) ∈ ℝ+ ) |
59 |
58
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 𝑈 ) ≠ 0 ) |
60 |
|
nnnn0 |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℕ0 ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑋 ∈ ℕ0 ) |
62 |
22 57 59 61
|
expdivd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑋 ) = ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) / ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) ) |
63 |
|
reexpcl |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ ℝ ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ∈ ℝ ) |
64 |
20 60 63
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ∈ ℝ ) |
65 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
66 |
65
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
67 |
|
nnre |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℝ ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
69 |
68 55
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · 𝑈 ) ∈ ℝ ) |
70 |
61
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 ≤ 𝑋 ) |
71 |
53
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝑈 ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 ≤ 𝑈 ) |
73 |
68 55 70 72
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 ≤ ( 𝑋 · 𝑈 ) ) |
74 |
|
flge0nn0 |
⊢ ( ( ( 𝑋 · 𝑈 ) ∈ ℝ ∧ 0 ≤ ( 𝑋 · 𝑈 ) ) → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ∈ ℕ0 ) |
75 |
69 73 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ∈ ℕ0 ) |
76 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℕ0 ) |
77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℕ0 ) |
78 |
77
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℝ ) |
79 |
66 78
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℝ ) |
80 |
34 77
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℝ ) |
81 |
79 80
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ∈ ℝ ) |
82 |
|
peano2re |
⊢ ( 𝑈 ∈ ℝ → ( 𝑈 + 1 ) ∈ ℝ ) |
83 |
55 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑈 + 1 ) ∈ ℝ ) |
84 |
68 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( 𝑈 + 1 ) ) ∈ ℝ ) |
85 |
66 84
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ∈ ℝ ) |
86 |
56 61
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ∈ ℝ ) |
87 |
86 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ∈ ℝ ) |
88 |
85 87
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ∈ ℝ ) |
89 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ∧ 𝑋 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ) |
90 |
5 17 60 89
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ) |
91 |
68
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑋 ∈ ℂ ) |
92 |
48
|
rpred |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
93 |
92
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑁 ) ∈ ℂ ) |
95 |
51
|
rpred |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ∈ ℝ ) |
96 |
95
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑀 ) ∈ ℂ ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑀 ) ∈ ℂ ) |
98 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑀 ) ∈ ℝ+ ) |
99 |
98
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑀 ) ≠ 0 ) |
100 |
91 94 97 99
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · ( log ‘ 𝑁 ) ) / ( log ‘ 𝑀 ) ) = ( 𝑋 · ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ) ) |
101 |
12
|
oveq2i |
⊢ ( 𝑋 · 𝑈 ) = ( 𝑋 · ( ( log ‘ 𝑁 ) / ( log ‘ 𝑀 ) ) ) |
102 |
100 101
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · ( log ‘ 𝑁 ) ) / ( log ‘ 𝑀 ) ) = ( 𝑋 · 𝑈 ) ) |
103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑋 · ( log ‘ 𝑁 ) ) / ( log ‘ 𝑀 ) ) · ( log ‘ 𝑀 ) ) = ( ( 𝑋 · 𝑈 ) · ( log ‘ 𝑀 ) ) ) |
104 |
91 94
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
105 |
104 97 99
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑋 · ( log ‘ 𝑁 ) ) / ( log ‘ 𝑀 ) ) · ( log ‘ 𝑀 ) ) = ( 𝑋 · ( log ‘ 𝑁 ) ) ) |
106 |
103 105
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) · ( log ‘ 𝑀 ) ) = ( 𝑋 · ( log ‘ 𝑁 ) ) ) |
107 |
|
flltp1 |
⊢ ( ( 𝑋 · 𝑈 ) ∈ ℝ → ( 𝑋 · 𝑈 ) < ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) |
108 |
69 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · 𝑈 ) < ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) |
109 |
69 78 98 108
|
ltmul1dd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) · ( log ‘ 𝑀 ) ) < ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) |
110 |
106 109
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( log ‘ 𝑁 ) ) < ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) |
111 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑁 ) ∈ ℝ ) |
112 |
68 111
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( log ‘ 𝑁 ) ) ∈ ℝ ) |
113 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( log ‘ 𝑀 ) ∈ ℝ ) |
114 |
78 113
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ∈ ℝ ) |
115 |
|
eflt |
⊢ ( ( ( 𝑋 · ( log ‘ 𝑁 ) ) ∈ ℝ ∧ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ∈ ℝ ) → ( ( 𝑋 · ( log ‘ 𝑁 ) ) < ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ↔ ( exp ‘ ( 𝑋 · ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) ) ) |
116 |
112 114 115
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · ( log ‘ 𝑁 ) ) < ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ↔ ( exp ‘ ( 𝑋 · ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) ) ) |
117 |
110 116
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( exp ‘ ( 𝑋 · ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) ) |
118 |
15
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
119 |
|
nnz |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℤ ) |
120 |
|
reexplog |
⊢ ( ( 𝑁 ∈ ℝ+ ∧ 𝑋 ∈ ℤ ) → ( 𝑁 ↑ 𝑋 ) = ( exp ‘ ( 𝑋 · ( log ‘ 𝑁 ) ) ) ) |
121 |
118 119 120
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) = ( exp ‘ ( 𝑋 · ( log ‘ 𝑁 ) ) ) ) |
122 |
65
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑀 ∈ ℝ+ ) |
123 |
77
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℤ ) |
124 |
|
reexplog |
⊢ ( ( 𝑀 ∈ ℝ+ ∧ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℤ ) → ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) = ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) ) |
125 |
122 123 124
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) = ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) · ( log ‘ 𝑀 ) ) ) ) |
126 |
117 121 125
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) < ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) |
127 |
|
nnexpcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ∈ ℕ ) |
128 |
15 60 127
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ∈ ℕ ) |
129 |
65 77
|
nnexpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℕ ) |
130 |
|
nnltlem1 |
⊢ ( ( ( 𝑁 ↑ 𝑋 ) ∈ ℕ ∧ ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℕ ) → ( ( 𝑁 ↑ 𝑋 ) < ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ↔ ( 𝑁 ↑ 𝑋 ) ≤ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) |
131 |
128 129 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑁 ↑ 𝑋 ) < ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ↔ ( 𝑁 ↑ 𝑋 ) ≤ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) |
132 |
126 131
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ≤ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) |
133 |
128
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ∈ ℕ0 ) |
134 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
135 |
133 134
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ) |
136 |
129
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℤ ) |
137 |
|
peano2zm |
⊢ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℤ → ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ∈ ℤ ) |
138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ∈ ℤ ) |
139 |
|
elfz5 |
⊢ ( ( ( 𝑁 ↑ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ∈ ℤ ) → ( ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ↔ ( 𝑁 ↑ 𝑋 ) ≤ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) |
140 |
135 138 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ↔ ( 𝑁 ↑ 𝑋 ) ≤ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) |
141 |
132 140
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) |
142 |
1 2 3 4 5 6 7 8 9 10 11
|
ostth2lem2 |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℕ0 ∧ ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ≤ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) |
143 |
142
|
3expia |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℕ0 ) → ( ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ≤ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) ) |
144 |
77 143
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑁 ↑ 𝑋 ) ∈ ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) − 1 ) ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ≤ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) ) |
145 |
141 144
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ≤ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) |
146 |
90 145
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ≤ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) |
147 |
85 80
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ∈ ℝ ) |
148 |
|
peano2re |
⊢ ( ( 𝑋 · 𝑈 ) ∈ ℝ → ( ( 𝑋 · 𝑈 ) + 1 ) ∈ ℝ ) |
149 |
69 148
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) + 1 ) ∈ ℝ ) |
150 |
75
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ∈ ℝ ) |
151 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 1 ∈ ℝ ) |
152 |
|
flle |
⊢ ( ( 𝑋 · 𝑈 ) ∈ ℝ → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ≤ ( 𝑋 · 𝑈 ) ) |
153 |
69 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ≤ ( 𝑋 · 𝑈 ) ) |
154 |
150 69 151 153
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ≤ ( ( 𝑋 · 𝑈 ) + 1 ) ) |
155 |
|
nnge1 |
⊢ ( 𝑋 ∈ ℕ → 1 ≤ 𝑋 ) |
156 |
155
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 1 ≤ 𝑋 ) |
157 |
151 68 69 156
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) + 1 ) ≤ ( ( 𝑋 · 𝑈 ) + 𝑋 ) ) |
158 |
55
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑈 ∈ ℂ ) |
159 |
151
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 1 ∈ ℂ ) |
160 |
91 158 159
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( 𝑈 + 1 ) ) = ( ( 𝑋 · 𝑈 ) + ( 𝑋 · 1 ) ) ) |
161 |
91
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · 1 ) = 𝑋 ) |
162 |
161
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) + ( 𝑋 · 1 ) ) = ( ( 𝑋 · 𝑈 ) + 𝑋 ) ) |
163 |
160 162
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( 𝑈 + 1 ) ) = ( ( 𝑋 · 𝑈 ) + 𝑋 ) ) |
164 |
157 163
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑋 · 𝑈 ) + 1 ) ≤ ( 𝑋 · ( 𝑈 + 1 ) ) ) |
165 |
78 149 84 154 164
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ≤ ( 𝑋 · ( 𝑈 + 1 ) ) ) |
166 |
65
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < 𝑀 ) |
167 |
|
lemul2 |
⊢ ( ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℝ ∧ ( 𝑋 · ( 𝑈 + 1 ) ) ∈ ℝ ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ≤ ( 𝑋 · ( 𝑈 + 1 ) ) ↔ ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) ) |
168 |
78 84 66 166 167
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ≤ ( 𝑋 · ( 𝑈 + 1 ) ) ↔ ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) ) |
169 |
165 168
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) |
170 |
|
expgt0 |
⊢ ( ( 𝑇 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ∈ ℤ ∧ 0 < 𝑇 ) → 0 < ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) |
171 |
34 123 43 170
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) |
172 |
|
lemul1 |
⊢ ( ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℝ ∧ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ∈ ℝ ∧ ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) → ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ↔ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) ) |
173 |
79 85 80 171 172
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ↔ ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) ) |
174 |
169 173
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ) |
175 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
176 |
175 75
|
expp1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) = ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) · 𝑇 ) ) |
177 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 1 ≤ 𝑇 ) |
178 |
|
remulcl |
⊢ ( ( 𝑈 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 𝑈 · 𝑋 ) ∈ ℝ ) |
179 |
54 67 178
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑈 · 𝑋 ) ∈ ℝ ) |
180 |
91 158
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · 𝑈 ) = ( 𝑈 · 𝑋 ) ) |
181 |
153 180
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ≤ ( 𝑈 · 𝑋 ) ) |
182 |
34 177 150 179 181
|
cxplead |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ≤ ( 𝑇 ↑𝑐 ( 𝑈 · 𝑋 ) ) ) |
183 |
|
cxpexp |
⊢ ( ( 𝑇 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ∈ ℕ0 ) → ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) = ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ) |
184 |
175 75 183
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) = ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ) |
185 |
44 55 91
|
cxpmuld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 ( 𝑈 · 𝑋 ) ) = ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 ) ) |
186 |
|
cxpexp |
⊢ ( ( ( 𝑇 ↑𝑐 𝑈 ) ∈ ℂ ∧ 𝑋 ∈ ℕ0 ) → ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 ) = ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) |
187 |
57 61 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 ) = ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) |
188 |
185 187
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑𝑐 ( 𝑈 · 𝑋 ) ) = ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) |
189 |
182 184 188
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ≤ ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) |
190 |
34 75
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ∈ ℝ ) |
191 |
190 86 44
|
lemul1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) ≤ ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ↔ ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) · 𝑇 ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) |
192 |
189 191
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) ) · 𝑇 ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) |
193 |
176 192
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) |
194 |
|
nngt0 |
⊢ ( 𝑋 ∈ ℕ → 0 < 𝑋 ) |
195 |
194
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < 𝑋 ) |
196 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 ∈ ℝ ) |
197 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑈 ∈ ℝ+ ) |
198 |
197
|
rpgt0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < 𝑈 ) |
199 |
55
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑈 < ( 𝑈 + 1 ) ) |
200 |
196 55 83 198 199
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < ( 𝑈 + 1 ) ) |
201 |
68 83 195 200
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < ( 𝑋 · ( 𝑈 + 1 ) ) ) |
202 |
66 84 166 201
|
mulgt0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 0 < ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) |
203 |
|
lemul2 |
⊢ ( ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ∈ ℝ ∧ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ∈ ℝ ∧ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ∈ ℝ ∧ 0 < ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) ) → ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ↔ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) ) |
204 |
80 87 85 202 203
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ↔ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) ) |
205 |
193 204
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) |
206 |
81 147 88 174 205
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) · ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋 · 𝑈 ) ) + 1 ) ) ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) |
207 |
64 81 88 146 206
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ≤ ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) ) |
208 |
85
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) ∈ ℂ ) |
209 |
86
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ∈ ℂ ) |
210 |
208 209 175
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) = ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · 𝑇 ) ) ) |
211 |
66
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
212 |
84
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( 𝑈 + 1 ) ) ∈ ℂ ) |
213 |
211 212 175
|
mul32d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · 𝑇 ) = ( ( 𝑀 · 𝑇 ) · ( 𝑋 · ( 𝑈 + 1 ) ) ) ) |
214 |
211 175
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · 𝑇 ) ∈ ℂ ) |
215 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑈 + 1 ) ∈ ℂ ) |
216 |
214 91 215
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · 𝑇 ) · ( 𝑋 · ( 𝑈 + 1 ) ) ) = ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) |
217 |
213 216
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · 𝑇 ) = ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) |
218 |
217
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · 𝑇 ) ) = ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) ) |
219 |
210 218
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · ( 𝑋 · ( 𝑈 + 1 ) ) ) · ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · 𝑇 ) ) = ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) ) |
220 |
207 219
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) ) |
221 |
66 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑀 · 𝑇 ) ∈ ℝ ) |
222 |
221 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ∈ ℝ ) |
223 |
68 222
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ∈ ℝ ) |
224 |
119
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → 𝑋 ∈ ℤ ) |
225 |
58 224
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ∈ ℝ+ ) |
226 |
64 223 225
|
ledivmuld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) / ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) ≤ ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ≤ ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) · ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) ) ) |
227 |
220 226
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) / ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) ≤ ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) |
228 |
62 227
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑁 ) / ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑋 ) ≤ ( 𝑋 · ( ( 𝑀 · 𝑇 ) · ( 𝑈 + 1 ) ) ) ) |