| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth2.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | ostth2.3 | ⊢ ( 𝜑  →  1  <  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 8 |  | ostth2.4 | ⊢ 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑁 ) )  /  ( log ‘ 𝑁 ) ) | 
						
							| 9 |  | ostth2.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 10 |  | ostth2.6 | ⊢ 𝑆  =  ( ( log ‘ ( 𝐹 ‘ 𝑀 ) )  /  ( log ‘ 𝑀 ) ) | 
						
							| 11 |  | ostth2.7 | ⊢ 𝑇  =  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 12 |  | ostth2.8 | ⊢ 𝑈  =  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) | 
						
							| 13 |  | eluz2b2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 14 | 6 13 | sylib | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 16 |  | nnq | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℚ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℚ ) | 
						
							| 18 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 19 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℚ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 20 | 5 17 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝐹 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 23 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 24 |  | eluz2b2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑀  ∈  ℕ  ∧  1  <  𝑀 ) ) | 
						
							| 25 | 9 24 | sylib | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  1  <  𝑀 ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 27 |  | nnq | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℚ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℚ ) | 
						
							| 29 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑀  ∈  ℚ )  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 30 | 5 28 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 31 |  | ifcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑀 )  ∈  ℝ )  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 32 | 23 30 31 | sylancr | ⊢ ( 𝜑  →  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 33 | 11 32 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑇  ∈  ℝ ) | 
						
							| 35 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 36 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 37 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 39 |  | max2 | ⊢ ( ( ( 𝐹 ‘ 𝑀 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 40 | 30 36 39 | syl2anc | ⊢ ( 𝜑  →  1  ≤  if ( ( 𝐹 ‘ 𝑀 )  ≤  1 ,  1 ,  ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 41 | 40 11 | breqtrrdi | ⊢ ( 𝜑  →  1  ≤  𝑇 ) | 
						
							| 42 | 35 36 33 38 41 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  𝑇 ) | 
						
							| 44 | 34 43 | elrpd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑇  ∈  ℝ+ ) | 
						
							| 45 | 44 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  ≤  𝑇 ) | 
						
							| 46 | 15 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 47 | 14 | simprd | ⊢ ( 𝜑  →  1  <  𝑁 ) | 
						
							| 48 | 46 47 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 49 | 26 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 50 | 25 | simprd | ⊢ ( 𝜑  →  1  <  𝑀 ) | 
						
							| 51 | 49 50 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ∈  ℝ+ ) | 
						
							| 52 | 48 51 | rpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) )  ∈  ℝ+ ) | 
						
							| 53 | 12 52 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 54 | 53 | rpred | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑈  ∈  ℝ ) | 
						
							| 56 | 34 45 55 | recxpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 𝑈 )  ∈  ℝ ) | 
						
							| 57 | 56 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 𝑈 )  ∈  ℂ ) | 
						
							| 58 | 44 55 | rpcxpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 𝑈 )  ∈  ℝ+ ) | 
						
							| 59 | 58 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 𝑈 )  ≠  0 ) | 
						
							| 60 |  | nnnn0 | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℕ0 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑋  ∈  ℕ0 ) | 
						
							| 62 | 22 57 59 61 | expdivd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑋 )  =  ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  /  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) ) | 
						
							| 63 |  | reexpcl | ⊢ ( ( ( 𝐹 ‘ 𝑁 )  ∈  ℝ  ∧  𝑋  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ∈  ℝ ) | 
						
							| 64 | 20 60 63 | syl2an | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ∈  ℝ ) | 
						
							| 65 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 66 | 65 | nnred | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 67 |  | nnre | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℝ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑋  ∈  ℝ ) | 
						
							| 69 | 68 55 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  𝑈 )  ∈  ℝ ) | 
						
							| 70 | 61 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  ≤  𝑋 ) | 
						
							| 71 | 53 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝑈 ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  ≤  𝑈 ) | 
						
							| 73 | 68 55 70 72 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  ≤  ( 𝑋  ·  𝑈 ) ) | 
						
							| 74 |  | flge0nn0 | ⊢ ( ( ( 𝑋  ·  𝑈 )  ∈  ℝ  ∧  0  ≤  ( 𝑋  ·  𝑈 ) )  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 75 | 69 73 74 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ∈  ℕ0 ) | 
						
							| 76 |  | peano2nn0 | ⊢ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ∈  ℕ0  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 78 | 77 | nn0red | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℝ ) | 
						
							| 79 | 66 78 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 80 | 34 77 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 81 | 79 80 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 82 |  | peano2re | ⊢ ( 𝑈  ∈  ℝ  →  ( 𝑈  +  1 )  ∈  ℝ ) | 
						
							| 83 | 55 82 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑈  +  1 )  ∈  ℝ ) | 
						
							| 84 | 68 83 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( 𝑈  +  1 ) )  ∈  ℝ ) | 
						
							| 85 | 66 84 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ∈  ℝ ) | 
						
							| 86 | 56 61 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ∈  ℝ ) | 
						
							| 87 | 86 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 )  ∈  ℝ ) | 
						
							| 88 | 85 87 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) )  ∈  ℝ ) | 
						
							| 89 | 1 2 | qabvexp | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑁  ∈  ℚ  ∧  𝑋  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ) | 
						
							| 90 | 5 17 60 89 | syl2an3an | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 ) ) | 
						
							| 91 | 68 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑋  ∈  ℂ ) | 
						
							| 92 | 48 | rpred | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 93 | 92 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 95 | 51 | rpred | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 98 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑀 )  ∈  ℝ+ ) | 
						
							| 99 | 98 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑀 )  ≠  0 ) | 
						
							| 100 | 91 94 97 99 | divassd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  /  ( log ‘ 𝑀 ) )  =  ( 𝑋  ·  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 101 | 12 | oveq2i | ⊢ ( 𝑋  ·  𝑈 )  =  ( 𝑋  ·  ( ( log ‘ 𝑁 )  /  ( log ‘ 𝑀 ) ) ) | 
						
							| 102 | 100 101 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  /  ( log ‘ 𝑀 ) )  =  ( 𝑋  ·  𝑈 ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  /  ( log ‘ 𝑀 ) )  ·  ( log ‘ 𝑀 ) )  =  ( ( 𝑋  ·  𝑈 )  ·  ( log ‘ 𝑀 ) ) ) | 
						
							| 104 | 91 94 | mulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( log ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 105 | 104 97 99 | divcan1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  /  ( log ‘ 𝑀 ) )  ·  ( log ‘ 𝑀 ) )  =  ( 𝑋  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 106 | 103 105 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  ·  ( log ‘ 𝑀 ) )  =  ( 𝑋  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 107 |  | flltp1 | ⊢ ( ( 𝑋  ·  𝑈 )  ∈  ℝ  →  ( 𝑋  ·  𝑈 )  <  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) | 
						
							| 108 | 69 107 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  𝑈 )  <  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) | 
						
							| 109 | 69 78 98 108 | ltmul1dd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  ·  ( log ‘ 𝑀 ) )  <  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) | 
						
							| 110 | 106 109 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( log ‘ 𝑁 ) )  <  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) | 
						
							| 111 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 112 | 68 111 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( log ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 113 | 95 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( log ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 114 | 78 113 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 115 |  | eflt | ⊢ ( ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  ∈  ℝ  ∧  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) )  ∈  ℝ )  →  ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  <  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) )  ↔  ( exp ‘ ( 𝑋  ·  ( log ‘ 𝑁 ) ) )  <  ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) ) ) | 
						
							| 116 | 112 114 115 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  ( log ‘ 𝑁 ) )  <  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) )  ↔  ( exp ‘ ( 𝑋  ·  ( log ‘ 𝑁 ) ) )  <  ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) ) ) | 
						
							| 117 | 110 116 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( exp ‘ ( 𝑋  ·  ( log ‘ 𝑁 ) ) )  <  ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 118 | 15 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 119 |  | nnz | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℤ ) | 
						
							| 120 |  | reexplog | ⊢ ( ( 𝑁  ∈  ℝ+  ∧  𝑋  ∈  ℤ )  →  ( 𝑁 ↑ 𝑋 )  =  ( exp ‘ ( 𝑋  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 121 | 118 119 120 | syl2an | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  =  ( exp ‘ ( 𝑋  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 122 | 65 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑀  ∈  ℝ+ ) | 
						
							| 123 | 77 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℤ ) | 
						
							| 124 |  | reexplog | ⊢ ( ( 𝑀  ∈  ℝ+  ∧  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℤ )  →  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  =  ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 125 | 122 123 124 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  =  ( exp ‘ ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ·  ( log ‘ 𝑀 ) ) ) ) | 
						
							| 126 | 117 121 125 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  <  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) | 
						
							| 127 |  | nnexpcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  ℕ0 )  →  ( 𝑁 ↑ 𝑋 )  ∈  ℕ ) | 
						
							| 128 | 15 60 127 | syl2an | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  ∈  ℕ ) | 
						
							| 129 | 65 77 | nnexpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℕ ) | 
						
							| 130 |  | nnltlem1 | ⊢ ( ( ( 𝑁 ↑ 𝑋 )  ∈  ℕ  ∧  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℕ )  →  ( ( 𝑁 ↑ 𝑋 )  <  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ↔  ( 𝑁 ↑ 𝑋 )  ≤  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) ) | 
						
							| 131 | 128 129 130 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑁 ↑ 𝑋 )  <  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ↔  ( 𝑁 ↑ 𝑋 )  ≤  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) ) | 
						
							| 132 | 126 131 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  ≤  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) | 
						
							| 133 | 128 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  ∈  ℕ0 ) | 
						
							| 134 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 135 | 133 134 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 136 | 129 | nnzd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℤ ) | 
						
							| 137 |  | peano2zm | ⊢ ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℤ  →  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 139 |  | elfz5 | ⊢ ( ( ( 𝑁 ↑ 𝑋 )  ∈  ( ℤ≥ ‘ 0 )  ∧  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 )  ∈  ℤ )  →  ( ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) )  ↔  ( 𝑁 ↑ 𝑋 )  ≤  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) ) | 
						
							| 140 | 135 138 139 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) )  ↔  ( 𝑁 ↑ 𝑋 )  ≤  ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) ) | 
						
							| 141 | 132 140 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) ) | 
						
							| 142 | 1 2 3 4 5 6 7 8 9 10 11 | ostth2lem2 | ⊢ ( ( 𝜑  ∧  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℕ0  ∧  ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) ) )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  ≤  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) | 
						
							| 143 | 142 | 3expia | ⊢ ( ( 𝜑  ∧  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℕ0 )  →  ( ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  ≤  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) ) | 
						
							| 144 | 77 143 | syldan | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑁 ↑ 𝑋 )  ∈  ( 0 ... ( ( 𝑀 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  −  1 ) )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  ≤  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) ) | 
						
							| 145 | 141 144 | mpd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) )  ≤  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) | 
						
							| 146 | 90 145 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ≤  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) | 
						
							| 147 | 85 80 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 148 |  | peano2re | ⊢ ( ( 𝑋  ·  𝑈 )  ∈  ℝ  →  ( ( 𝑋  ·  𝑈 )  +  1 )  ∈  ℝ ) | 
						
							| 149 | 69 148 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  +  1 )  ∈  ℝ ) | 
						
							| 150 | 75 | nn0red | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ∈  ℝ ) | 
						
							| 151 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 152 |  | flle | ⊢ ( ( 𝑋  ·  𝑈 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ≤  ( 𝑋  ·  𝑈 ) ) | 
						
							| 153 | 69 152 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ≤  ( 𝑋  ·  𝑈 ) ) | 
						
							| 154 | 150 69 151 153 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ≤  ( ( 𝑋  ·  𝑈 )  +  1 ) ) | 
						
							| 155 |  | nnge1 | ⊢ ( 𝑋  ∈  ℕ  →  1  ≤  𝑋 ) | 
						
							| 156 | 155 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  1  ≤  𝑋 ) | 
						
							| 157 | 151 68 69 156 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  +  1 )  ≤  ( ( 𝑋  ·  𝑈 )  +  𝑋 ) ) | 
						
							| 158 | 55 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑈  ∈  ℂ ) | 
						
							| 159 | 151 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 160 | 91 158 159 | adddid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( 𝑈  +  1 ) )  =  ( ( 𝑋  ·  𝑈 )  +  ( 𝑋  ·  1 ) ) ) | 
						
							| 161 | 91 | mulridd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  1 )  =  𝑋 ) | 
						
							| 162 | 161 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  +  ( 𝑋  ·  1 ) )  =  ( ( 𝑋  ·  𝑈 )  +  𝑋 ) ) | 
						
							| 163 | 160 162 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( 𝑈  +  1 ) )  =  ( ( 𝑋  ·  𝑈 )  +  𝑋 ) ) | 
						
							| 164 | 157 163 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑋  ·  𝑈 )  +  1 )  ≤  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) | 
						
							| 165 | 78 149 84 154 164 | letrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ≤  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) | 
						
							| 166 | 65 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  𝑀 ) | 
						
							| 167 |  | lemul2 | ⊢ ( ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℝ  ∧  ( 𝑋  ·  ( 𝑈  +  1 ) )  ∈  ℝ  ∧  ( 𝑀  ∈  ℝ  ∧  0  <  𝑀 ) )  →  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ≤  ( 𝑋  ·  ( 𝑈  +  1 ) )  ↔  ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) ) | 
						
							| 168 | 78 84 66 166 167 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ≤  ( 𝑋  ·  ( 𝑈  +  1 ) )  ↔  ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) ) | 
						
							| 169 | 165 168 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 170 |  | expgt0 | ⊢ ( ( 𝑇  ∈  ℝ  ∧  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 )  ∈  ℤ  ∧  0  <  𝑇 )  →  0  <  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) | 
						
							| 171 | 34 123 43 170 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) | 
						
							| 172 |  | lemul1 | ⊢ ( ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℝ  ∧  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ∈  ℝ  ∧  ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℝ  ∧  0  <  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) )  →  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ↔  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) ) | 
						
							| 173 | 79 85 80 171 172 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ↔  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) ) | 
						
							| 174 | 169 173 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) ) ) | 
						
							| 175 | 34 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑇  ∈  ℂ ) | 
						
							| 176 | 175 75 | expp1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  =  ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ·  𝑇 ) ) | 
						
							| 177 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  1  ≤  𝑇 ) | 
						
							| 178 |  | remulcl | ⊢ ( ( 𝑈  ∈  ℝ  ∧  𝑋  ∈  ℝ )  →  ( 𝑈  ·  𝑋 )  ∈  ℝ ) | 
						
							| 179 | 54 67 178 | syl2an | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑈  ·  𝑋 )  ∈  ℝ ) | 
						
							| 180 | 91 158 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  𝑈 )  =  ( 𝑈  ·  𝑋 ) ) | 
						
							| 181 | 153 180 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ≤  ( 𝑈  ·  𝑋 ) ) | 
						
							| 182 | 34 177 150 179 181 | cxplead | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ≤  ( 𝑇 ↑𝑐 ( 𝑈  ·  𝑋 ) ) ) | 
						
							| 183 |  | cxpexp | ⊢ ( ( 𝑇  ∈  ℂ  ∧  ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  ∈  ℕ0 )  →  ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  =  ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) ) ) | 
						
							| 184 | 175 75 183 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  =  ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) ) ) | 
						
							| 185 | 44 55 91 | cxpmuld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 ( 𝑈  ·  𝑋 ) )  =  ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 ) ) | 
						
							| 186 |  | cxpexp | ⊢ ( ( ( 𝑇 ↑𝑐 𝑈 )  ∈  ℂ  ∧  𝑋  ∈  ℕ0 )  →  ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 )  =  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) | 
						
							| 187 | 57 61 186 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑𝑐 𝑈 ) ↑𝑐 𝑋 )  =  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) | 
						
							| 188 | 185 187 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑𝑐 ( 𝑈  ·  𝑋 ) )  =  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) | 
						
							| 189 | 182 184 188 | 3brtr3d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ≤  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) ) | 
						
							| 190 | 34 75 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ∈  ℝ ) | 
						
							| 191 | 190 86 44 | lemul1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ≤  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ↔  ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ·  𝑇 )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) | 
						
							| 192 | 189 191 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑ ( ⌊ ‘ ( 𝑋  ·  𝑈 ) ) )  ·  𝑇 )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) | 
						
							| 193 | 176 192 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) | 
						
							| 194 |  | nngt0 | ⊢ ( 𝑋  ∈  ℕ  →  0  <  𝑋 ) | 
						
							| 195 | 194 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  𝑋 ) | 
						
							| 196 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 197 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑈  ∈  ℝ+ ) | 
						
							| 198 | 197 | rpgt0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  𝑈 ) | 
						
							| 199 | 55 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑈  <  ( 𝑈  +  1 ) ) | 
						
							| 200 | 196 55 83 198 199 | lttrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  ( 𝑈  +  1 ) ) | 
						
							| 201 | 68 83 195 200 | mulgt0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) | 
						
							| 202 | 66 84 166 201 | mulgt0d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  0  <  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 203 |  | lemul2 | ⊢ ( ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ∈  ℝ  ∧  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 )  ∈  ℝ  ∧  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ∈  ℝ  ∧  0  <  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) )  →  ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 )  ↔  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) ) | 
						
							| 204 | 80 87 85 202 203 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 )  ↔  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) ) | 
						
							| 205 | 193 204 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) | 
						
							| 206 | 81 147 88 174 205 | letrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) )  ·  ( 𝑇 ↑ ( ( ⌊ ‘ ( 𝑋  ·  𝑈 ) )  +  1 ) ) )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) | 
						
							| 207 | 64 81 88 146 206 | letrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ≤  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) ) ) | 
						
							| 208 | 85 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ∈  ℂ ) | 
						
							| 209 | 86 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ∈  ℂ ) | 
						
							| 210 | 208 209 175 | mul12d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) )  =  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  𝑇 ) ) ) | 
						
							| 211 | 66 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑀  ∈  ℂ ) | 
						
							| 212 | 84 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( 𝑈  +  1 ) )  ∈  ℂ ) | 
						
							| 213 | 211 212 175 | mul32d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  𝑇 )  =  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 214 | 211 175 | mulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  𝑇 )  ∈  ℂ ) | 
						
							| 215 | 83 | recnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑈  +  1 )  ∈  ℂ ) | 
						
							| 216 | 214 91 215 | mul12d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  =  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 217 | 213 216 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  𝑇 )  =  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 218 | 217 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  𝑇 ) )  =  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) ) | 
						
							| 219 | 210 218 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  ( 𝑋  ·  ( 𝑈  +  1 ) ) )  ·  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  𝑇 ) )  =  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) ) | 
						
							| 220 | 207 219 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) ) | 
						
							| 221 | 66 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑀  ·  𝑇 )  ∈  ℝ ) | 
						
							| 222 | 221 83 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) )  ∈  ℝ ) | 
						
							| 223 | 68 222 | remulcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) )  ∈  ℝ ) | 
						
							| 224 | 119 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  𝑋  ∈  ℤ ) | 
						
							| 225 | 58 224 | rpexpcld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ∈  ℝ+ ) | 
						
							| 226 | 64 223 225 | ledivmuld | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  /  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) )  ≤  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) )  ↔  ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  ≤  ( ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 )  ·  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) ) ) | 
						
							| 227 | 220 226 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑁 ) ↑ 𝑋 )  /  ( ( 𝑇 ↑𝑐 𝑈 ) ↑ 𝑋 ) )  ≤  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) | 
						
							| 228 | 62 227 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑁 )  /  ( 𝑇 ↑𝑐 𝑈 ) ) ↑ 𝑋 )  ≤  ( 𝑋  ·  ( ( 𝑀  ·  𝑇 )  ·  ( 𝑈  +  1 ) ) ) ) |