Metamath Proof Explorer


Theorem ostthlem1

Description: Lemma for ostth . If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
ostthlem1.1 φ F A
ostthlem1.2 φ G A
ostthlem1.3 φ n 2 F n = G n
Assertion ostthlem1 φ F = G

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 ostthlem1.1 φ F A
4 ostthlem1.2 φ G A
5 ostthlem1.3 φ n 2 F n = G n
6 1 qrngbas = Base Q
7 2 6 abvf F A F :
8 ffn F : F Fn
9 3 7 8 3syl φ F Fn
10 2 6 abvf G A G :
11 ffn G : G Fn
12 4 10 11 3syl φ G Fn
13 elq y k n y = k n
14 1 qdrng Q DivRing
15 14 a1i φ k n Q DivRing
16 3 adantr φ k n F A
17 zq k k
18 17 ad2antrl φ k n k
19 nnq n n
20 19 ad2antll φ k n n
21 nnne0 n n 0
22 21 ad2antll φ k n n 0
23 1 qrng0 0 = 0 Q
24 eqid / r Q = / r Q
25 2 6 23 24 abvdiv Q DivRing F A k n n 0 F k / r Q n = F k F n
26 15 16 18 20 22 25 syl23anc φ k n F k / r Q n = F k F n
27 4 adantr φ k n G A
28 2 6 23 24 abvdiv Q DivRing G A k n n 0 G k / r Q n = G k G n
29 15 27 18 20 22 28 syl23anc φ k n G k / r Q n = G k G n
30 2 23 abv0 F A F 0 = 0
31 3 30 syl φ F 0 = 0
32 2 23 abv0 G A G 0 = 0
33 4 32 syl φ G 0 = 0
34 31 33 eqtr4d φ F 0 = G 0
35 fveq2 k = 0 F k = F 0
36 fveq2 k = 0 G k = G 0
37 35 36 eqeq12d k = 0 F k = G k F 0 = G 0
38 34 37 syl5ibrcom φ k = 0 F k = G k
39 38 adantr φ k k = 0 F k = G k
40 39 imp φ k k = 0 F k = G k
41 elnn1uz2 n n = 1 n 2
42 1 qrng1 1 = 1 Q
43 2 42 abv1 Q DivRing F A F 1 = 1
44 14 3 43 sylancr φ F 1 = 1
45 2 42 abv1 Q DivRing G A G 1 = 1
46 14 4 45 sylancr φ G 1 = 1
47 44 46 eqtr4d φ F 1 = G 1
48 fveq2 n = 1 F n = F 1
49 fveq2 n = 1 G n = G 1
50 48 49 eqeq12d n = 1 F n = G n F 1 = G 1
51 47 50 syl5ibrcom φ n = 1 F n = G n
52 51 imp φ n = 1 F n = G n
53 52 5 jaodan φ n = 1 n 2 F n = G n
54 41 53 sylan2b φ n F n = G n
55 54 ralrimiva φ n F n = G n
56 55 adantr φ k n F n = G n
57 fveq2 n = k F n = F k
58 fveq2 n = k G n = G k
59 57 58 eqeq12d n = k F n = G n F k = G k
60 59 rspccva n F n = G n k F k = G k
61 56 60 sylan φ k k F k = G k
62 fveq2 n = inv g Q k F n = F inv g Q k
63 fveq2 n = inv g Q k G n = G inv g Q k
64 62 63 eqeq12d n = inv g Q k F n = G n F inv g Q k = G inv g Q k
65 55 ad2antrr φ k k n F n = G n
66 17 adantl φ k k
67 1 qrngneg k inv g Q k = k
68 66 67 syl φ k inv g Q k = k
69 68 eleq1d φ k inv g Q k k
70 69 biimpar φ k k inv g Q k
71 64 65 70 rspcdva φ k k F inv g Q k = G inv g Q k
72 3 ad2antrr φ k k F A
73 17 ad2antlr φ k k k
74 eqid inv g Q = inv g Q
75 2 6 74 abvneg F A k F inv g Q k = F k
76 72 73 75 syl2anc φ k k F inv g Q k = F k
77 4 ad2antrr φ k k G A
78 2 6 74 abvneg G A k G inv g Q k = G k
79 77 73 78 syl2anc φ k k G inv g Q k = G k
80 71 76 79 3eqtr3d φ k k F k = G k
81 elz k k k = 0 k k
82 81 simprbi k k = 0 k k
83 82 adantl φ k k = 0 k k
84 40 61 80 83 mpjao3dan φ k F k = G k
85 84 adantrr φ k n F k = G k
86 54 adantrl φ k n F n = G n
87 85 86 oveq12d φ k n F k F n = G k G n
88 29 87 eqtr4d φ k n G k / r Q n = F k F n
89 26 88 eqtr4d φ k n F k / r Q n = G k / r Q n
90 1 qrngdiv k n n 0 k / r Q n = k n
91 18 20 22 90 syl3anc φ k n k / r Q n = k n
92 91 fveq2d φ k n F k / r Q n = F k n
93 91 fveq2d φ k n G k / r Q n = G k n
94 89 92 93 3eqtr3d φ k n F k n = G k n
95 fveq2 y = k n F y = F k n
96 fveq2 y = k n G y = G k n
97 95 96 eqeq12d y = k n F y = G y F k n = G k n
98 94 97 syl5ibrcom φ k n y = k n F y = G y
99 98 rexlimdvva φ k n y = k n F y = G y
100 13 99 syl5bi φ y F y = G y
101 100 imp φ y F y = G y
102 9 12 101 eqfnfvd φ F = G