| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|
| 2 |
|
qabsabv.a |
|
| 3 |
|
ostthlem1.1 |
|
| 4 |
|
ostthlem1.2 |
|
| 5 |
|
ostthlem1.3 |
|
| 6 |
1
|
qrngbas |
|
| 7 |
2 6
|
abvf |
|
| 8 |
|
ffn |
|
| 9 |
3 7 8
|
3syl |
|
| 10 |
2 6
|
abvf |
|
| 11 |
|
ffn |
|
| 12 |
4 10 11
|
3syl |
|
| 13 |
|
elq |
|
| 14 |
1
|
qdrng |
|
| 15 |
14
|
a1i |
|
| 16 |
3
|
adantr |
|
| 17 |
|
zq |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
|
nnq |
|
| 20 |
19
|
ad2antll |
|
| 21 |
|
nnne0 |
|
| 22 |
21
|
ad2antll |
|
| 23 |
1
|
qrng0 |
|
| 24 |
|
eqid |
|
| 25 |
2 6 23 24
|
abvdiv |
|
| 26 |
15 16 18 20 22 25
|
syl23anc |
|
| 27 |
4
|
adantr |
|
| 28 |
2 6 23 24
|
abvdiv |
|
| 29 |
15 27 18 20 22 28
|
syl23anc |
|
| 30 |
2 23
|
abv0 |
|
| 31 |
3 30
|
syl |
|
| 32 |
2 23
|
abv0 |
|
| 33 |
4 32
|
syl |
|
| 34 |
31 33
|
eqtr4d |
|
| 35 |
|
fveq2 |
|
| 36 |
|
fveq2 |
|
| 37 |
35 36
|
eqeq12d |
|
| 38 |
34 37
|
syl5ibrcom |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
imp |
|
| 41 |
|
elnn1uz2 |
|
| 42 |
1
|
qrng1 |
|
| 43 |
2 42
|
abv1 |
|
| 44 |
14 3 43
|
sylancr |
|
| 45 |
2 42
|
abv1 |
|
| 46 |
14 4 45
|
sylancr |
|
| 47 |
44 46
|
eqtr4d |
|
| 48 |
|
fveq2 |
|
| 49 |
|
fveq2 |
|
| 50 |
48 49
|
eqeq12d |
|
| 51 |
47 50
|
syl5ibrcom |
|
| 52 |
51
|
imp |
|
| 53 |
52 5
|
jaodan |
|
| 54 |
41 53
|
sylan2b |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
55
|
adantr |
|
| 57 |
|
fveq2 |
|
| 58 |
|
fveq2 |
|
| 59 |
57 58
|
eqeq12d |
|
| 60 |
59
|
rspccva |
|
| 61 |
56 60
|
sylan |
|
| 62 |
|
fveq2 |
|
| 63 |
|
fveq2 |
|
| 64 |
62 63
|
eqeq12d |
|
| 65 |
55
|
ad2antrr |
|
| 66 |
17
|
adantl |
|
| 67 |
1
|
qrngneg |
|
| 68 |
66 67
|
syl |
|
| 69 |
68
|
eleq1d |
|
| 70 |
69
|
biimpar |
|
| 71 |
64 65 70
|
rspcdva |
|
| 72 |
3
|
ad2antrr |
|
| 73 |
17
|
ad2antlr |
|
| 74 |
|
eqid |
|
| 75 |
2 6 74
|
abvneg |
|
| 76 |
72 73 75
|
syl2anc |
|
| 77 |
4
|
ad2antrr |
|
| 78 |
2 6 74
|
abvneg |
|
| 79 |
77 73 78
|
syl2anc |
|
| 80 |
71 76 79
|
3eqtr3d |
|
| 81 |
|
elz |
|
| 82 |
81
|
simprbi |
|
| 83 |
82
|
adantl |
|
| 84 |
40 61 80 83
|
mpjao3dan |
|
| 85 |
84
|
adantrr |
|
| 86 |
54
|
adantrl |
|
| 87 |
85 86
|
oveq12d |
|
| 88 |
29 87
|
eqtr4d |
|
| 89 |
26 88
|
eqtr4d |
|
| 90 |
1
|
qrngdiv |
|
| 91 |
18 20 22 90
|
syl3anc |
|
| 92 |
91
|
fveq2d |
|
| 93 |
91
|
fveq2d |
|
| 94 |
89 92 93
|
3eqtr3d |
|
| 95 |
|
fveq2 |
|
| 96 |
|
fveq2 |
|
| 97 |
95 96
|
eqeq12d |
|
| 98 |
94 97
|
syl5ibrcom |
|
| 99 |
98
|
rexlimdvva |
|
| 100 |
13 99
|
biimtrid |
|
| 101 |
100
|
imp |
|
| 102 |
9 12 101
|
eqfnfvd |
|