Metamath Proof Explorer


Theorem abvdiv

Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses abv0.a A=AbsValR
abvneg.b B=BaseR
abvrec.z 0˙=0R
abvdiv.p ×˙=/rR
Assertion abvdiv RDivRingFAXBYBY0˙FX×˙Y=FXFY

Proof

Step Hyp Ref Expression
1 abv0.a A=AbsValR
2 abvneg.b B=BaseR
3 abvrec.z 0˙=0R
4 abvdiv.p ×˙=/rR
5 simplr RDivRingFAXBYBY0˙FA
6 simpr1 RDivRingFAXBYBY0˙XB
7 simpll RDivRingFAXBYBY0˙RDivRing
8 simpr2 RDivRingFAXBYBY0˙YB
9 simpr3 RDivRingFAXBYBY0˙Y0˙
10 eqid invrR=invrR
11 2 3 10 drnginvrcl RDivRingYBY0˙invrRYB
12 7 8 9 11 syl3anc RDivRingFAXBYBY0˙invrRYB
13 eqid R=R
14 1 2 13 abvmul FAXBinvrRYBFXRinvrRY=FXFinvrRY
15 5 6 12 14 syl3anc RDivRingFAXBYBY0˙FXRinvrRY=FXFinvrRY
16 1 2 3 10 abvrec RDivRingFAYBY0˙FinvrRY=1FY
17 16 3adantr1 RDivRingFAXBYBY0˙FinvrRY=1FY
18 17 oveq2d RDivRingFAXBYBY0˙FXFinvrRY=FX1FY
19 15 18 eqtrd RDivRingFAXBYBY0˙FXRinvrRY=FX1FY
20 eqid UnitR=UnitR
21 2 20 3 drngunit RDivRingYUnitRYBY0˙
22 7 21 syl RDivRingFAXBYBY0˙YUnitRYBY0˙
23 8 9 22 mpbir2and RDivRingFAXBYBY0˙YUnitR
24 2 13 20 10 4 dvrval XBYUnitRX×˙Y=XRinvrRY
25 6 23 24 syl2anc RDivRingFAXBYBY0˙X×˙Y=XRinvrRY
26 25 fveq2d RDivRingFAXBYBY0˙FX×˙Y=FXRinvrRY
27 1 2 abvcl FAXBFX
28 5 6 27 syl2anc RDivRingFAXBYBY0˙FX
29 28 recnd RDivRingFAXBYBY0˙FX
30 1 2 abvcl FAYBFY
31 5 8 30 syl2anc RDivRingFAXBYBY0˙FY
32 31 recnd RDivRingFAXBYBY0˙FY
33 1 2 3 abvne0 FAYBY0˙FY0
34 5 8 9 33 syl3anc RDivRingFAXBYBY0˙FY0
35 29 32 34 divrecd RDivRingFAXBYBY0˙FXFY=FX1FY
36 19 26 35 3eqtr4d RDivRingFAXBYBY0˙FX×˙Y=FXFY