Metamath Proof Explorer


Theorem abvrec

Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses abv0.a A = AbsVal R
abvneg.b B = Base R
abvrec.z 0 ˙ = 0 R
abvrec.p I = inv r R
Assertion abvrec R DivRing F A X B X 0 ˙ F I X = 1 F X

Proof

Step Hyp Ref Expression
1 abv0.a A = AbsVal R
2 abvneg.b B = Base R
3 abvrec.z 0 ˙ = 0 R
4 abvrec.p I = inv r R
5 simplr R DivRing F A X B X 0 ˙ F A
6 simprl R DivRing F A X B X 0 ˙ X B
7 1 2 abvcl F A X B F X
8 5 6 7 syl2anc R DivRing F A X B X 0 ˙ F X
9 8 recnd R DivRing F A X B X 0 ˙ F X
10 simpll R DivRing F A X B X 0 ˙ R DivRing
11 simprr R DivRing F A X B X 0 ˙ X 0 ˙
12 2 3 4 drnginvrcl R DivRing X B X 0 ˙ I X B
13 10 6 11 12 syl3anc R DivRing F A X B X 0 ˙ I X B
14 1 2 abvcl F A I X B F I X
15 5 13 14 syl2anc R DivRing F A X B X 0 ˙ F I X
16 15 recnd R DivRing F A X B X 0 ˙ F I X
17 1 2 3 abvne0 F A X B X 0 ˙ F X 0
18 5 6 11 17 syl3anc R DivRing F A X B X 0 ˙ F X 0
19 eqid R = R
20 eqid 1 R = 1 R
21 2 3 19 20 4 drnginvrr R DivRing X B X 0 ˙ X R I X = 1 R
22 10 6 11 21 syl3anc R DivRing F A X B X 0 ˙ X R I X = 1 R
23 22 fveq2d R DivRing F A X B X 0 ˙ F X R I X = F 1 R
24 1 2 19 abvmul F A X B I X B F X R I X = F X F I X
25 5 6 13 24 syl3anc R DivRing F A X B X 0 ˙ F X R I X = F X F I X
26 1 20 abv1 R DivRing F A F 1 R = 1
27 26 adantr R DivRing F A X B X 0 ˙ F 1 R = 1
28 23 25 27 3eqtr3d R DivRing F A X B X 0 ˙ F X F I X = 1
29 9 16 18 28 mvllmuld R DivRing F A X B X 0 ˙ F I X = 1 F X