Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
|
2 |
|
qabsabv.a |
|
3 |
|
ostthlem1.1 |
|
4 |
|
ostthlem1.2 |
|
5 |
|
ostthlem2.3 |
|
6 |
|
eluz2nn |
|
7 |
|
fveq2 |
|
8 |
|
fveq2 |
|
9 |
7 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
fveq2 |
|
12 |
|
fveq2 |
|
13 |
11 12
|
eqeq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
fveq2 |
|
16 |
|
fveq2 |
|
17 |
15 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
eqeq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
fveq2 |
|
24 |
|
fveq2 |
|
25 |
23 24
|
eqeq12d |
|
26 |
25
|
imbi2d |
|
27 |
|
ax-1ne0 |
|
28 |
1
|
qrng1 |
|
29 |
1
|
qrng0 |
|
30 |
2 28 29
|
abv1z |
|
31 |
3 27 30
|
sylancl |
|
32 |
2 28 29
|
abv1z |
|
33 |
4 27 32
|
sylancl |
|
34 |
31 33
|
eqtr4d |
|
35 |
5
|
expcom |
|
36 |
|
jcab |
|
37 |
|
oveq12 |
|
38 |
3
|
adantr |
|
39 |
|
eluzelz |
|
40 |
39
|
ad2antrl |
|
41 |
|
zq |
|
42 |
40 41
|
syl |
|
43 |
|
eluzelz |
|
44 |
43
|
ad2antll |
|
45 |
|
zq |
|
46 |
44 45
|
syl |
|
47 |
1
|
qrngbas |
|
48 |
|
qex |
|
49 |
|
cnfldmul |
|
50 |
1 49
|
ressmulr |
|
51 |
48 50
|
ax-mp |
|
52 |
2 47 51
|
abvmul |
|
53 |
38 42 46 52
|
syl3anc |
|
54 |
4
|
adantr |
|
55 |
2 47 51
|
abvmul |
|
56 |
54 42 46 55
|
syl3anc |
|
57 |
53 56
|
eqeq12d |
|
58 |
37 57
|
syl5ibr |
|
59 |
58
|
expcom |
|
60 |
59
|
a2d |
|
61 |
36 60
|
syl5bir |
|
62 |
10 14 18 22 26 34 35 61
|
prmind |
|
63 |
62
|
impcom |
|
64 |
6 63
|
sylan2 |
|
65 |
1 2 3 4 64
|
ostthlem1 |
|