| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|
| 2 |
|
abvneg.b |
|
| 3 |
|
abvneg.p |
|
| 4 |
1
|
abvrcl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
ringgrp |
|
| 7 |
4 6
|
syl |
|
| 8 |
2 3
|
grpinvcl |
|
| 9 |
7 8
|
sylan |
|
| 10 |
|
simpr |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
2 11 12
|
ring1eq0 |
|
| 14 |
5 9 10 13
|
syl3anc |
|
| 15 |
14
|
imp |
|
| 16 |
15
|
fveq2d |
|
| 17 |
2 11
|
ringidcl |
|
| 18 |
4 17
|
syl |
|
| 19 |
2 3
|
grpinvcl |
|
| 20 |
7 18 19
|
syl2anc |
|
| 21 |
1 2
|
abvcl |
|
| 22 |
20 21
|
mpdan |
|
| 23 |
22
|
recnd |
|
| 24 |
23
|
sqvald |
|
| 25 |
|
eqid |
|
| 26 |
1 2 25
|
abvmul |
|
| 27 |
20 20 26
|
mpd3an23 |
|
| 28 |
2 25 3 4 20 18
|
ringmneg2 |
|
| 29 |
2 25 11 3 4 18
|
ringnegl |
|
| 30 |
29
|
fveq2d |
|
| 31 |
2 3
|
grpinvinv |
|
| 32 |
7 18 31
|
syl2anc |
|
| 33 |
28 30 32
|
3eqtrd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
24 27 34
|
3eqtr2d |
|
| 36 |
35
|
adantr |
|
| 37 |
1 11 12
|
abv1z |
|
| 38 |
36 37
|
eqtrd |
|
| 39 |
|
sq1 |
|
| 40 |
38 39
|
eqtr4di |
|
| 41 |
1 2
|
abvge0 |
|
| 42 |
20 41
|
mpdan |
|
| 43 |
|
1re |
|
| 44 |
|
0le1 |
|
| 45 |
|
sq11 |
|
| 46 |
43 44 45
|
mpanr12 |
|
| 47 |
22 42 46
|
syl2anc |
|
| 48 |
47
|
biimpa |
|
| 49 |
40 48
|
syldan |
|
| 50 |
49
|
adantlr |
|
| 51 |
50
|
oveq1d |
|
| 52 |
|
simpl |
|
| 53 |
20
|
adantr |
|
| 54 |
1 2 25
|
abvmul |
|
| 55 |
52 53 10 54
|
syl3anc |
|
| 56 |
2 25 11 3 5 10
|
ringnegl |
|
| 57 |
56
|
fveq2d |
|
| 58 |
55 57
|
eqtr3d |
|
| 59 |
58
|
adantr |
|
| 60 |
51 59
|
eqtr3d |
|
| 61 |
1 2
|
abvcl |
|
| 62 |
61
|
recnd |
|
| 63 |
62
|
mullidd |
|
| 64 |
63
|
adantr |
|
| 65 |
60 64
|
eqtr3d |
|
| 66 |
16 65
|
pm2.61dane |
|