Metamath Proof Explorer


Theorem ostth2

Description: - Lemma for ostth : regular case. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
padic.j J = q x if x = 0 0 q q pCnt x
ostth.k K = x if x = 0 0 1
ostth.1 φ F A
ostth2.2 φ N 2
ostth2.3 φ 1 < F N
ostth2.4 R = log F N log N
Assertion ostth2 φ a 0 1 F = y y a

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 padic.j J = q x if x = 0 0 q q pCnt x
4 ostth.k K = x if x = 0 0 1
5 ostth.1 φ F A
6 ostth2.2 φ N 2
7 ostth2.3 φ 1 < F N
8 ostth2.4 R = log F N log N
9 eluz2b2 N 2 N 1 < N
10 6 9 sylib φ N 1 < N
11 10 simpld φ N
12 nnq N N
13 11 12 syl φ N
14 1 qrngbas = Base Q
15 2 14 abvcl F A N F N
16 5 13 15 syl2anc φ F N
17 16 7 rplogcld φ log F N +
18 11 nnred φ N
19 10 simprd φ 1 < N
20 18 19 rplogcld φ log N +
21 17 20 rpdivcld φ log F N log N +
22 8 21 eqeltrid φ R +
23 22 rpred φ R
24 22 rpgt0d φ 0 < R
25 11 nnnn0d φ N 0
26 1 2 qabvle F A N 0 F N N
27 5 25 26 syl2anc φ F N N
28 11 nnne0d φ N 0
29 1 qrng0 0 = 0 Q
30 2 14 29 abvgt0 F A N N 0 0 < F N
31 5 13 28 30 syl3anc φ 0 < F N
32 16 31 elrpd φ F N +
33 32 reeflogd φ e log F N = F N
34 11 nnrpd φ N +
35 34 reeflogd φ e log N = N
36 27 33 35 3brtr4d φ e log F N e log N
37 17 rpred φ log F N
38 34 relogcld φ log N
39 efle log F N log N log F N log N e log F N e log N
40 37 38 39 syl2anc φ log F N log N e log F N e log N
41 36 40 mpbird φ log F N log N
42 20 rpcnd φ log N
43 42 mulid1d φ log N 1 = log N
44 41 43 breqtrrd φ log F N log N 1
45 1red φ 1
46 37 45 20 ledivmuld φ log F N log N 1 log F N log N 1
47 44 46 mpbird φ log F N log N 1
48 8 47 eqbrtrid φ R 1
49 0xr 0 *
50 1re 1
51 elioc2 0 * 1 R 0 1 R 0 < R R 1
52 49 50 51 mp2an R 0 1 R 0 < R R 1
53 23 24 48 52 syl3anbrc φ R 0 1
54 1 2 qabsabv abs A
55 fvres y abs y = y
56 55 oveq1d y abs y R = y R
57 56 mpteq2ia y abs y R = y y R
58 57 eqcomi y y R = y abs y R
59 2 14 58 abvcxp abs A R 0 1 y y R A
60 54 53 59 sylancr φ y y R A
61 eluzelz z 2 z
62 zq z z
63 fveq2 y = z y = z
64 63 oveq1d y = z y R = z R
65 eqid y y R = y y R
66 ovex z R V
67 64 65 66 fvmpt z y y R z = z R
68 61 62 67 3syl z 2 y y R z = z R
69 68 adantl φ z 2 y y R z = z R
70 simpr φ z 2 z 2
71 eluz2b2 z 2 z 1 < z
72 70 71 sylib φ z 2 z 1 < z
73 72 simpld φ z 2 z
74 73 nnred φ z 2 z
75 73 nnnn0d φ z 2 z 0
76 75 nn0ge0d φ z 2 0 z
77 74 76 absidd φ z 2 z = z
78 77 oveq1d φ z 2 z R = z R
79 74 recnd φ z 2 z
80 73 nnne0d φ z 2 z 0
81 22 rpcnd φ R
82 81 adantr φ z 2 R
83 79 80 82 cxpefd φ z 2 z R = e R log z
84 5 adantr φ z 2 F A
85 6 adantr φ z 2 N 2
86 7 adantr φ z 2 1 < F N
87 eqid log F z log z = log F z log z
88 eqid if F z 1 1 F z = if F z 1 1 F z
89 eqid log N log z = log N log z
90 1 2 3 4 84 85 86 8 70 87 88 89 ostth2lem4 φ z 2 1 < F z R log F z log z
91 90 simprd φ z 2 R log F z log z
92 90 simpld φ z 2 1 < F z
93 eqid if F N 1 1 F N = if F N 1 1 F N
94 eqid log z log N = log z log N
95 1 2 3 4 84 70 92 87 85 8 93 94 ostth2lem4 φ z 2 1 < F N log F z log z R
96 95 simprd φ z 2 log F z log z R
97 23 adantr φ z 2 R
98 61 adantl φ z 2 z
99 98 62 syl φ z 2 z
100 2 14 abvcl F A z F z
101 84 99 100 syl2anc φ z 2 F z
102 2 14 29 abvgt0 F A z z 0 0 < F z
103 84 99 80 102 syl3anc φ z 2 0 < F z
104 101 103 elrpd φ z 2 F z +
105 104 relogcld φ z 2 log F z
106 73 nnrpd φ z 2 z +
107 106 relogcld φ z 2 log z
108 ef0 e 0 = 1
109 72 simprd φ z 2 1 < z
110 106 reeflogd φ z 2 e log z = z
111 109 110 breqtrrd φ z 2 1 < e log z
112 108 111 eqbrtrid φ z 2 e 0 < e log z
113 0re 0
114 eflt 0 log z 0 < log z e 0 < e log z
115 113 107 114 sylancr φ z 2 0 < log z e 0 < e log z
116 112 115 mpbird φ z 2 0 < log z
117 116 gt0ne0d φ z 2 log z 0
118 105 107 117 redivcld φ z 2 log F z log z
119 97 118 letri3d φ z 2 R = log F z log z R log F z log z log F z log z R
120 91 96 119 mpbir2and φ z 2 R = log F z log z
121 120 oveq1d φ z 2 R log z = log F z log z log z
122 105 recnd φ z 2 log F z
123 107 recnd φ z 2 log z
124 122 123 117 divcan1d φ z 2 log F z log z log z = log F z
125 121 124 eqtrd φ z 2 R log z = log F z
126 125 fveq2d φ z 2 e R log z = e log F z
127 104 reeflogd φ z 2 e log F z = F z
128 83 126 127 3eqtrd φ z 2 z R = F z
129 69 78 128 3eqtrrd φ z 2 F z = y y R z
130 1 2 5 60 129 ostthlem1 φ F = y y R
131 oveq2 a = R y a = y R
132 131 mpteq2dv a = R y y a = y y R
133 132 rspceeqv R 0 1 F = y y R a 0 1 F = y y a
134 53 130 133 syl2anc φ a 0 1 F = y y a