Metamath Proof Explorer


Theorem ostth2

Description: - Lemma for ostth : regular case. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
ostth.1 φFA
ostth2.2 φN2
ostth2.3 φ1<FN
ostth2.4 R=logFNlogN
Assertion ostth2 φa01F=yya

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 ostth.1 φFA
6 ostth2.2 φN2
7 ostth2.3 φ1<FN
8 ostth2.4 R=logFNlogN
9 eluz2b2 N2N1<N
10 6 9 sylib φN1<N
11 10 simpld φN
12 nnq NN
13 11 12 syl φN
14 1 qrngbas =BaseQ
15 2 14 abvcl FANFN
16 5 13 15 syl2anc φFN
17 16 7 rplogcld φlogFN+
18 11 nnred φN
19 10 simprd φ1<N
20 18 19 rplogcld φlogN+
21 17 20 rpdivcld φlogFNlogN+
22 8 21 eqeltrid φR+
23 22 rpred φR
24 22 rpgt0d φ0<R
25 11 nnnn0d φN0
26 1 2 qabvle FAN0FNN
27 5 25 26 syl2anc φFNN
28 11 nnne0d φN0
29 1 qrng0 0=0Q
30 2 14 29 abvgt0 FANN00<FN
31 5 13 28 30 syl3anc φ0<FN
32 16 31 elrpd φFN+
33 32 reeflogd φelogFN=FN
34 11 nnrpd φN+
35 34 reeflogd φelogN=N
36 27 33 35 3brtr4d φelogFNelogN
37 17 rpred φlogFN
38 34 relogcld φlogN
39 efle logFNlogNlogFNlogNelogFNelogN
40 37 38 39 syl2anc φlogFNlogNelogFNelogN
41 36 40 mpbird φlogFNlogN
42 20 rpcnd φlogN
43 42 mulridd φlogN1=logN
44 41 43 breqtrrd φlogFNlogN1
45 1red φ1
46 37 45 20 ledivmuld φlogFNlogN1logFNlogN1
47 44 46 mpbird φlogFNlogN1
48 8 47 eqbrtrid φR1
49 0xr 0*
50 1re 1
51 elioc2 0*1R01R0<RR1
52 49 50 51 mp2an R01R0<RR1
53 23 24 48 52 syl3anbrc φR01
54 1 2 qabsabv absA
55 fvres yabsy=y
56 55 oveq1d yabsyR=yR
57 56 mpteq2ia yabsyR=yyR
58 57 eqcomi yyR=yabsyR
59 2 14 58 abvcxp absAR01yyRA
60 54 53 59 sylancr φyyRA
61 eluzelz z2z
62 zq zz
63 fveq2 y=zy=z
64 63 oveq1d y=zyR=zR
65 eqid yyR=yyR
66 ovex zRV
67 64 65 66 fvmpt zyyRz=zR
68 61 62 67 3syl z2yyRz=zR
69 68 adantl φz2yyRz=zR
70 simpr φz2z2
71 eluz2b2 z2z1<z
72 70 71 sylib φz2z1<z
73 72 simpld φz2z
74 73 nnred φz2z
75 73 nnnn0d φz2z0
76 75 nn0ge0d φz20z
77 74 76 absidd φz2z=z
78 77 oveq1d φz2zR=zR
79 74 recnd φz2z
80 73 nnne0d φz2z0
81 22 rpcnd φR
82 81 adantr φz2R
83 79 80 82 cxpefd φz2zR=eRlogz
84 5 adantr φz2FA
85 6 adantr φz2N2
86 7 adantr φz21<FN
87 eqid logFzlogz=logFzlogz
88 eqid ifFz11Fz=ifFz11Fz
89 eqid logNlogz=logNlogz
90 1 2 3 4 84 85 86 8 70 87 88 89 ostth2lem4 φz21<FzRlogFzlogz
91 90 simprd φz2RlogFzlogz
92 90 simpld φz21<Fz
93 eqid ifFN11FN=ifFN11FN
94 eqid logzlogN=logzlogN
95 1 2 3 4 84 70 92 87 85 8 93 94 ostth2lem4 φz21<FNlogFzlogzR
96 95 simprd φz2logFzlogzR
97 23 adantr φz2R
98 61 adantl φz2z
99 98 62 syl φz2z
100 2 14 abvcl FAzFz
101 84 99 100 syl2anc φz2Fz
102 2 14 29 abvgt0 FAzz00<Fz
103 84 99 80 102 syl3anc φz20<Fz
104 101 103 elrpd φz2Fz+
105 104 relogcld φz2logFz
106 73 nnrpd φz2z+
107 106 relogcld φz2logz
108 ef0 e0=1
109 72 simprd φz21<z
110 106 reeflogd φz2elogz=z
111 109 110 breqtrrd φz21<elogz
112 108 111 eqbrtrid φz2e0<elogz
113 0re 0
114 eflt 0logz0<logze0<elogz
115 113 107 114 sylancr φz20<logze0<elogz
116 112 115 mpbird φz20<logz
117 116 gt0ne0d φz2logz0
118 105 107 117 redivcld φz2logFzlogz
119 97 118 letri3d φz2R=logFzlogzRlogFzlogzlogFzlogzR
120 91 96 119 mpbir2and φz2R=logFzlogz
121 120 oveq1d φz2Rlogz=logFzlogzlogz
122 105 recnd φz2logFz
123 107 recnd φz2logz
124 122 123 117 divcan1d φz2logFzlogzlogz=logFz
125 121 124 eqtrd φz2Rlogz=logFz
126 125 fveq2d φz2eRlogz=elogFz
127 104 reeflogd φz2elogFz=Fz
128 83 126 127 3eqtrd φz2zR=Fz
129 69 78 128 3eqtrrd φz2Fz=yyRz
130 1 2 5 60 129 ostthlem1 φF=yyR
131 oveq2 a=Rya=yR
132 131 mpteq2dv a=Ryya=yyR
133 132 rspceeqv R01F=yyRa01F=yya
134 53 130 133 syl2anc φa01F=yya