| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 |  | ostth.k | ⊢ 𝐾  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  1 ) ) | 
						
							| 5 |  | ostth.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝐴 ) | 
						
							| 6 |  | ostth3.2 | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 7 |  | ostth3.3 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 8 |  | ostth3.4 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  <  1 ) | 
						
							| 9 |  | ostth3.5 | ⊢ 𝑅  =  - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) | 
						
							| 10 |  | ostth3.6 | ⊢ 𝑆  =  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 11 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 12 | 7 11 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 13 |  | eluz2b2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 16 |  | nnq | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℚ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℚ ) | 
						
							| 18 | 1 | qrngbas | ⊢ ℚ  =  ( Base ‘ 𝑄 ) | 
						
							| 19 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑃  ∈  ℚ )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 20 | 5 17 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 21 | 15 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 22 | 1 | qrng0 | ⊢ 0  =  ( 0g ‘ 𝑄 ) | 
						
							| 23 | 2 18 22 | abvgt0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑃  ∈  ℚ  ∧  𝑃  ≠  0 )  →  0  <  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 24 | 5 17 21 23 | syl3anc | ⊢ ( 𝜑  →  0  <  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 25 | 20 24 | elrpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 26 | 25 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 27 | 15 | nnred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 28 | 14 | simprd | ⊢ ( 𝜑  →  1  <  𝑃 ) | 
						
							| 29 | 27 28 | rplogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 30 | 26 29 | rerpdivcld | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 31 | 30 | renegcld | ⊢ ( 𝜑  →  - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 32 | 9 31 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 33 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 34 |  | logltb | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ+  ∧  1  ∈  ℝ+ )  →  ( ( 𝐹 ‘ 𝑃 )  <  1  ↔  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  ( log ‘ 1 ) ) ) | 
						
							| 35 | 25 33 34 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑃 )  <  1  ↔  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  ( log ‘ 1 ) ) ) | 
						
							| 36 | 8 35 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  ( log ‘ 1 ) ) | 
						
							| 37 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 38 | 36 37 | breqtrdi | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  0 ) | 
						
							| 39 | 29 | rpcnd | ⊢ ( 𝜑  →  ( log ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 40 | 39 | mul01d | ⊢ ( 𝜑  →  ( ( log ‘ 𝑃 )  ·  0 )  =  0 ) | 
						
							| 41 | 38 40 | breqtrrd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  ( ( log ‘ 𝑃 )  ·  0 ) ) | 
						
							| 42 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 43 | 26 42 29 | ltdivmuld | ⊢ ( 𝜑  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  <  0  ↔  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  <  ( ( log ‘ 𝑃 )  ·  0 ) ) ) | 
						
							| 44 | 41 43 | mpbird | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  <  0 ) | 
						
							| 45 | 30 | lt0neg1d | ⊢ ( 𝜑  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  <  0  ↔  0  <  - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) ) | 
						
							| 46 | 44 45 | mpbid | ⊢ ( 𝜑  →  0  <  - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 47 | 46 9 | breqtrrdi | ⊢ ( 𝜑  →  0  <  𝑅 ) | 
						
							| 48 | 32 47 | elrpd | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 49 | 1 2 3 | padicabvcxp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  ∈  𝐴 ) | 
						
							| 50 | 7 48 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  ∈  𝐴 ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑦  =  𝑃  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 )  =  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝑦  =  𝑃  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) | 
						
							| 53 |  | eqid | ⊢ ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 54 |  | ovex | ⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 )  ∈  V | 
						
							| 55 | 52 53 54 | fvmpt | ⊢ ( 𝑃  ∈  ℚ  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) | 
						
							| 56 | 17 55 | syl | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) | 
						
							| 57 | 3 | padicval | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ∈  ℚ )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 )  =  if ( 𝑃  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) ) ) ) | 
						
							| 58 | 7 17 57 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 )  =  if ( 𝑃  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) ) ) ) | 
						
							| 59 | 21 | neneqd | ⊢ ( 𝜑  →  ¬  𝑃  =  0 ) | 
						
							| 60 | 59 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑃  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) ) )  =  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) ) ) | 
						
							| 61 | 15 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 62 | 61 | exp1d | ⊢ ( 𝜑  →  ( 𝑃 ↑ 1 )  =  𝑃 ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝑃 ↑ 1 ) )  =  ( 𝑃  pCnt  𝑃 ) ) | 
						
							| 64 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 65 |  | pcid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  1  ∈  ℤ )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 1 ) )  =  1 ) | 
						
							| 66 | 7 64 65 | sylancl | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝑃 ↑ 1 ) )  =  1 ) | 
						
							| 67 | 63 66 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝑃 )  =  1 ) | 
						
							| 68 | 67 | negeqd | ⊢ ( 𝜑  →  - ( 𝑃  pCnt  𝑃 )  =  - 1 ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) )  =  ( 𝑃 ↑ - 1 ) ) | 
						
							| 70 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℤ ) | 
						
							| 72 | 61 21 71 | cxpexpzd | ⊢ ( 𝜑  →  ( 𝑃 ↑𝑐 - 1 )  =  ( 𝑃 ↑ - 1 ) ) | 
						
							| 73 | 69 72 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑃 ) )  =  ( 𝑃 ↑𝑐 - 1 ) ) | 
						
							| 74 | 58 60 73 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 )  =  ( 𝑃 ↑𝑐 - 1 ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) | 
						
							| 76 | 32 | recnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 77 | 76 | mulm1d | ⊢ ( 𝜑  →  ( - 1  ·  𝑅 )  =  - 𝑅 ) | 
						
							| 78 | 9 | negeqi | ⊢ - 𝑅  =  - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) | 
						
							| 79 | 30 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 80 | 79 | negnegd | ⊢ ( 𝜑  →  - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  =  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 81 | 78 80 | eqtrid | ⊢ ( 𝜑  →  - 𝑅  =  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 82 | 77 81 | eqtrd | ⊢ ( 𝜑  →  ( - 1  ·  𝑅 )  =  ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃 ↑𝑐 ( - 1  ·  𝑅 ) )  =  ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) ) ) | 
						
							| 84 | 15 | nnrpd | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 85 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 86 | 85 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℝ ) | 
						
							| 87 | 84 86 76 | cxpmuld | ⊢ ( 𝜑  →  ( 𝑃 ↑𝑐 ( - 1  ·  𝑅 ) )  =  ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) | 
						
							| 88 | 61 21 79 | cxpefd | ⊢ ( 𝜑  →  ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) )  =  ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ·  ( log ‘ 𝑃 ) ) ) ) | 
						
							| 89 | 26 | recnd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 90 | 29 | rpne0d | ⊢ ( 𝜑  →  ( log ‘ 𝑃 )  ≠  0 ) | 
						
							| 91 | 89 39 90 | divcan1d | ⊢ ( 𝜑  →  ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ·  ( log ‘ 𝑃 ) )  =  ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( 𝜑  →  ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) )  ·  ( log ‘ 𝑃 ) ) )  =  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 93 | 25 | reeflogd | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 94 | 88 92 93 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) )  /  ( log ‘ 𝑃 ) ) )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 95 | 83 87 94 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 96 | 56 75 95 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑃  =  𝑝  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 98 |  | fveq2 | ⊢ ( 𝑃  =  𝑝  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) | 
						
							| 99 | 97 98 | eqeq12d | ⊢ ( 𝑃  =  𝑝  →  ( ( 𝐹 ‘ 𝑃 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 )  ↔  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) | 
						
							| 100 | 96 99 | syl5ibcom | ⊢ ( 𝜑  →  ( 𝑃  =  𝑝  →  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑃  =  𝑝  →  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) | 
						
							| 102 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 103 | 102 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑝  ∈  ℕ ) | 
						
							| 104 |  | nnq | ⊢ ( 𝑝  ∈  ℕ  →  𝑝  ∈  ℚ ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑝  ∈  ℚ ) | 
						
							| 106 |  | fveq2 | ⊢ ( 𝑦  =  𝑝  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 )  =  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ) | 
						
							| 107 | 106 | oveq1d | ⊢ ( 𝑦  =  𝑝  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) | 
						
							| 108 |  | ovex | ⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 )  ∈  V | 
						
							| 109 | 107 53 108 | fvmpt | ⊢ ( 𝑝  ∈  ℚ  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) | 
						
							| 110 | 105 109 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) | 
						
							| 111 | 76 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑅  ∈  ℂ ) | 
						
							| 112 | 111 | 1cxpd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 1 ↑𝑐 𝑅 )  =  1 ) | 
						
							| 113 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑃  ∈  ℙ ) | 
						
							| 114 | 3 | padicval | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑝  ∈  ℚ )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 )  =  if ( 𝑝  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) ) ) ) | 
						
							| 115 | 113 105 114 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 )  =  if ( 𝑝  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) ) ) ) | 
						
							| 116 | 103 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑝  ≠  0 ) | 
						
							| 117 | 116 | neneqd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ¬  𝑝  =  0 ) | 
						
							| 118 | 117 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  if ( 𝑝  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) ) )  =  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) ) ) | 
						
							| 119 |  | pceq0 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑝  ∈  ℕ )  →  ( ( 𝑃  pCnt  𝑝 )  =  0  ↔  ¬  𝑃  ∥  𝑝 ) ) | 
						
							| 120 | 7 102 119 | syl2an | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑃  pCnt  𝑝 )  =  0  ↔  ¬  𝑃  ∥  𝑝 ) ) | 
						
							| 121 |  | dvdsprm | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑃  ∥  𝑝  ↔  𝑃  =  𝑝 ) ) | 
						
							| 122 | 12 121 | sylan | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑃  ∥  𝑝  ↔  𝑃  =  𝑝 ) ) | 
						
							| 123 | 122 | necon3bbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ¬  𝑃  ∥  𝑝  ↔  𝑃  ≠  𝑝 ) ) | 
						
							| 124 | 120 123 | bitrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑃  pCnt  𝑝 )  =  0  ↔  𝑃  ≠  𝑝 ) ) | 
						
							| 125 | 124 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝑃  pCnt  𝑝 )  =  0 ) | 
						
							| 126 | 125 | negeqd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  - ( 𝑃  pCnt  𝑝 )  =  - 0 ) | 
						
							| 127 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 128 | 126 127 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  - ( 𝑃  pCnt  𝑝 )  =  0 ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 130 | 61 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝑃  ∈  ℂ ) | 
						
							| 131 | 130 | exp0d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 132 | 129 131 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑝 ) )  =  1 ) | 
						
							| 133 | 115 118 132 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 )  =  1 ) | 
						
							| 134 | 133 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 )  =  ( 1 ↑𝑐 𝑅 ) ) | 
						
							| 135 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 136 | 135 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  2  ∈  ℝ ) | 
						
							| 137 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  𝐹  ∈  𝐴 ) | 
						
							| 138 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑝  ∈  ℚ )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ ) | 
						
							| 139 | 137 105 138 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ ) | 
						
							| 140 | 2 18 22 | abvgt0 | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑝  ∈  ℚ  ∧  𝑝  ≠  0 )  →  0  <  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 141 | 137 105 116 140 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  0  <  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 142 | 139 141 | elrpd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ+ ) | 
						
							| 143 | 142 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ+ ) | 
						
							| 144 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 145 | 143 144 | ifcld | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ+ ) | 
						
							| 146 | 10 145 | eqeltrid | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑆  ∈  ℝ+ ) | 
						
							| 147 | 146 | rprecred | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 1  /  𝑆 )  ∈  ℝ ) | 
						
							| 148 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 149 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝐹 ‘ 𝑃 )  <  1 ) | 
						
							| 150 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑝 )  =  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  →  ( ( 𝐹 ‘ 𝑝 )  <  1  ↔  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  <  1 ) ) | 
						
							| 151 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  →  ( ( 𝐹 ‘ 𝑃 )  <  1  ↔  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  <  1 ) ) | 
						
							| 152 | 150 151 | ifboth | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  <  1  ∧  ( 𝐹 ‘ 𝑃 )  <  1 )  →  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  <  1 ) | 
						
							| 153 | 148 149 152 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) )  <  1 ) | 
						
							| 154 | 10 153 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑆  <  1 ) | 
						
							| 155 | 146 | reclt1d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝑆  <  1  ↔  1  <  ( 1  /  𝑆 ) ) ) | 
						
							| 156 | 154 155 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  1  <  ( 1  /  𝑆 ) ) | 
						
							| 157 |  | expnbnd | ⊢ ( ( 2  ∈  ℝ  ∧  ( 1  /  𝑆 )  ∈  ℝ  ∧  1  <  ( 1  /  𝑆 ) )  →  ∃ 𝑘  ∈  ℕ 2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 ) ) | 
						
							| 158 | 136 147 156 157 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ∃ 𝑘  ∈  ℕ 2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 ) ) | 
						
							| 159 | 146 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑆  ∈  ℂ ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑆  ∈  ℂ ) | 
						
							| 161 | 146 | rpne0d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑆  ≠  0 ) | 
						
							| 162 | 161 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑆  ≠  0 ) | 
						
							| 163 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 164 | 163 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℤ ) | 
						
							| 165 | 160 162 164 | exprecd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝑆 ) ↑ 𝑘 )  =  ( 1  /  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 166 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝐹  ∈  𝐴 ) | 
						
							| 167 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 168 | 1 | qrng1 | ⊢ 1  =  ( 1r ‘ 𝑄 ) | 
						
							| 169 | 2 168 22 | abv1z | ⊢ ( ( 𝐹  ∈  𝐴  ∧  1  ≠  0 )  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 170 | 166 167 169 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 1 )  =  1 ) | 
						
							| 171 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 172 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 173 |  | nnexpcl | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 174 | 171 172 173 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 175 | 174 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 176 | 102 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑝  ∈  ℕ ) | 
						
							| 177 |  | nnexpcl | ⊢ ( ( 𝑝  ∈  ℕ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑝 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 178 | 176 172 177 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑝 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 179 | 178 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑝 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 180 |  | bezout | ⊢ ( ( ( 𝑃 ↑ 𝑘 )  ∈  ℤ  ∧  ( 𝑝 ↑ 𝑘 )  ∈  ℤ )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) | 
						
							| 181 | 175 179 180 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) | 
						
							| 182 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑃  ≠  𝑝 ) | 
						
							| 183 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 184 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑝  ∈  ℙ ) | 
						
							| 185 |  | prmrp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑃  gcd  𝑝 )  =  1  ↔  𝑃  ≠  𝑝 ) ) | 
						
							| 186 | 183 184 185 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( ( 𝑃  gcd  𝑝 )  =  1  ↔  𝑃  ≠  𝑝 ) ) | 
						
							| 187 | 182 186 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( 𝑃  gcd  𝑝 )  =  1 ) | 
						
							| 188 | 187 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑃  gcd  𝑝 )  =  1 ) | 
						
							| 189 | 171 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑃  ∈  ℕ ) | 
						
							| 190 | 176 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑝  ∈  ℕ ) | 
						
							| 191 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 192 |  | rppwr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑝  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  gcd  𝑝 )  =  1  →  ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  1 ) ) | 
						
							| 193 | 189 190 191 192 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃  gcd  𝑝 )  =  1  →  ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  1 ) ) | 
						
							| 194 | 188 193 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  1 ) | 
						
							| 195 | 194 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  1 ) | 
						
							| 196 | 195 | eqeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ↔  1  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) ) | 
						
							| 197 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 198 | 174 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 199 |  | nnq | ⊢ ( ( 𝑃 ↑ 𝑘 )  ∈  ℕ  →  ( 𝑃 ↑ 𝑘 )  ∈  ℚ ) | 
						
							| 200 | 198 199 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℚ ) | 
						
							| 201 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑎  ∈  ℤ ) | 
						
							| 202 |  | zq | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℚ ) | 
						
							| 203 | 201 202 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑎  ∈  ℚ ) | 
						
							| 204 |  | qmulcl | ⊢ ( ( ( 𝑃 ↑ 𝑘 )  ∈  ℚ  ∧  𝑎  ∈  ℚ )  →  ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  ∈  ℚ ) | 
						
							| 205 | 200 203 204 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  ∈  ℚ ) | 
						
							| 206 | 178 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝑝 ↑ 𝑘 )  ∈  ℕ ) | 
						
							| 207 |  | nnq | ⊢ ( ( 𝑝 ↑ 𝑘 )  ∈  ℕ  →  ( 𝑝 ↑ 𝑘 )  ∈  ℚ ) | 
						
							| 208 | 206 207 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝑝 ↑ 𝑘 )  ∈  ℚ ) | 
						
							| 209 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑏  ∈  ℤ ) | 
						
							| 210 |  | zq | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℚ ) | 
						
							| 211 | 209 210 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑏  ∈  ℚ ) | 
						
							| 212 |  | qmulcl | ⊢ ( ( ( 𝑝 ↑ 𝑘 )  ∈  ℚ  ∧  𝑏  ∈  ℚ )  →  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 )  ∈  ℚ ) | 
						
							| 213 | 208 211 212 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 )  ∈  ℚ ) | 
						
							| 214 |  | qaddcl | ⊢ ( ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  ∈  ℚ  ∧  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 )  ∈  ℚ )  →  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ∈  ℚ ) | 
						
							| 215 | 205 213 214 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ∈  ℚ ) | 
						
							| 216 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ∈  ℝ ) | 
						
							| 217 | 197 215 216 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ∈  ℝ ) | 
						
							| 218 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  ∈  ℝ ) | 
						
							| 219 | 197 205 218 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  ∈  ℝ ) | 
						
							| 220 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ∈  ℝ ) | 
						
							| 221 | 197 213 220 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ∈  ℝ ) | 
						
							| 222 | 219 221 | readdcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  +  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ∈  ℝ ) | 
						
							| 223 |  | rpexpcl | ⊢ ( ( 𝑆  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( 𝑆 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 224 | 146 163 223 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 225 | 224 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 226 | 225 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝑆 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 227 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝑆 ↑ 𝑘 )  ∈  ℝ )  →  ( 2  ·  ( 𝑆 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 228 | 135 226 227 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 2  ·  ( 𝑆 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 229 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 230 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 231 | 1 230 | ressplusg | ⊢ ( ℚ  ∈  V  →   +   =  ( +g ‘ 𝑄 ) ) | 
						
							| 232 | 229 231 | ax-mp | ⊢  +   =  ( +g ‘ 𝑄 ) | 
						
							| 233 | 2 18 232 | abvtri | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  ∈  ℚ  ∧  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 )  ∈  ℚ )  →  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  +  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) ) | 
						
							| 234 | 197 205 213 233 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  +  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) ) | 
						
							| 235 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 236 | 1 235 | ressmulr | ⊢ ( ℚ  ∈  V  →   ·   =  ( .r ‘ 𝑄 ) ) | 
						
							| 237 | 229 236 | ax-mp | ⊢  ·   =  ( .r ‘ 𝑄 ) | 
						
							| 238 | 2 18 237 | abvmul | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑃 ↑ 𝑘 )  ∈  ℚ  ∧  𝑎  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  =  ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 239 | 197 200 203 238 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  =  ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 240 | 17 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑃  ∈  ℚ ) | 
						
							| 241 | 172 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 242 | 1 2 | qabvexp | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑃  ∈  ℚ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 243 | 197 240 241 242 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 244 | 243 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑎 ) )  =  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 245 | 239 244 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  =  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 246 | 197 240 19 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 247 | 246 241 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 248 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑎  ∈  ℚ )  →  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 249 | 197 203 248 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 250 | 247 249 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ∈  ℝ ) | 
						
							| 251 |  | elz | ⊢ ( 𝑎  ∈  ℤ  ↔  ( 𝑎  ∈  ℝ  ∧  ( 𝑎  =  0  ∨  𝑎  ∈  ℕ  ∨  - 𝑎  ∈  ℕ ) ) ) | 
						
							| 252 | 251 | simprbi | ⊢ ( 𝑎  ∈  ℤ  →  ( 𝑎  =  0  ∨  𝑎  ∈  ℕ  ∨  - 𝑎  ∈  ℕ ) ) | 
						
							| 253 | 252 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  =  0  ∨  𝑎  ∈  ℕ  ∨  - 𝑎  ∈  ℕ ) ) | 
						
							| 254 | 2 22 | abv0 | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 255 | 5 254 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  0 ) | 
						
							| 256 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 257 | 255 256 | eqbrtrdi | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  ≤  1 ) | 
						
							| 258 | 257 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝐹 ‘ 0 )  ≤  1 ) | 
						
							| 259 |  | fveq2 | ⊢ ( 𝑎  =  0  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 260 | 259 | breq1d | ⊢ ( 𝑎  =  0  →  ( ( 𝐹 ‘ 𝑎 )  ≤  1  ↔  ( 𝐹 ‘ 0 )  ≤  1 ) ) | 
						
							| 261 | 258 260 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  =  0  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 262 |  | nnq | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℚ ) | 
						
							| 263 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑛  ∈  ℚ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 264 | 5 262 263 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 265 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 266 |  | lenlt | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑛 )  ≤  1  ↔  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 267 | 264 265 266 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ≤  1  ↔  ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 268 | 267 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ≤  1  ↔  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 269 | 6 268 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ≤  1 ) | 
						
							| 270 |  | fveq2 | ⊢ ( 𝑛  =  𝑎  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 271 | 270 | breq1d | ⊢ ( 𝑛  =  𝑎  →  ( ( 𝐹 ‘ 𝑛 )  ≤  1  ↔  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 272 | 271 | rspccv | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ≤  1  →  ( 𝑎  ∈  ℕ  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 273 | 269 272 | syl | ⊢ ( 𝜑  →  ( 𝑎  ∈  ℕ  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 274 | 273 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  ∈  ℕ  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 275 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  𝐹  ∈  𝐴 ) | 
						
							| 276 | 202 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  𝑎  ∈  ℚ ) | 
						
							| 277 |  | eqid | ⊢ ( invg ‘ 𝑄 )  =  ( invg ‘ 𝑄 ) | 
						
							| 278 | 2 18 277 | abvneg | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑎  ∈  ℚ )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 279 | 275 276 278 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 280 |  | fveq2 | ⊢ ( 𝑛  =  ( ( invg ‘ 𝑄 ) ‘ 𝑎 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ) | 
						
							| 281 | 280 | breq1d | ⊢ ( 𝑛  =  ( ( invg ‘ 𝑄 ) ‘ 𝑎 )  →  ( ( 𝐹 ‘ 𝑛 )  ≤  1  ↔  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) )  ≤  1 ) ) | 
						
							| 282 | 269 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ≤  1 ) | 
						
							| 283 | 1 | qrngneg | ⊢ ( 𝑎  ∈  ℚ  →  ( ( invg ‘ 𝑄 ) ‘ 𝑎 )  =  - 𝑎 ) | 
						
							| 284 | 276 283 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ( ( invg ‘ 𝑄 ) ‘ 𝑎 )  =  - 𝑎 ) | 
						
							| 285 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  - 𝑎  ∈  ℕ ) | 
						
							| 286 | 284 285 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ( ( invg ‘ 𝑄 ) ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 287 | 281 282 286 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) )  ≤  1 ) | 
						
							| 288 | 279 287 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℤ  ∧  - 𝑎  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) | 
						
							| 289 | 288 | expr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( - 𝑎  ∈  ℕ  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 290 | 261 274 289 | 3jaod | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( ( 𝑎  =  0  ∨  𝑎  ∈  ℕ  ∨  - 𝑎  ∈  ℕ )  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 291 | 253 290 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) | 
						
							| 292 | 291 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℤ ( 𝐹 ‘ 𝑎 )  ≤  1 ) | 
						
							| 293 | 292 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ∀ 𝑎  ∈  ℤ ( 𝐹 ‘ 𝑎 )  ≤  1 ) | 
						
							| 294 |  | rsp | ⊢ ( ∀ 𝑎  ∈  ℤ ( 𝐹 ‘ 𝑎 )  ≤  1  →  ( 𝑎  ∈  ℤ  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) ) | 
						
							| 295 | 293 201 294 | sylc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑎 )  ≤  1 ) | 
						
							| 296 | 265 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  1  ∈  ℝ ) | 
						
							| 297 | 163 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 298 | 24 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  <  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 299 |  | expgt0 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  𝑘  ∈  ℤ  ∧  0  <  ( 𝐹 ‘ 𝑃 ) )  →  0  <  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 300 | 246 297 298 299 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  <  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 301 |  | lemul2 | ⊢ ( ( ( 𝐹 ‘ 𝑎 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ∈  ℝ  ∧  0  <  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) )  →  ( ( 𝐹 ‘ 𝑎 )  ≤  1  ↔  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ≤  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  1 ) ) ) | 
						
							| 302 | 249 296 247 300 301 | syl112anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑎 )  ≤  1  ↔  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ≤  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  1 ) ) ) | 
						
							| 303 | 295 302 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ≤  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  1 ) ) | 
						
							| 304 | 247 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 305 | 304 | mulridd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  1 )  =  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 306 | 303 305 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ≤  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) | 
						
							| 307 | 146 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  𝑆  ∈  ℝ ) | 
						
							| 308 | 307 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 309 | 144 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 310 | 309 | rpge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 311 | 176 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑝  ∈  ℕ ) | 
						
							| 312 | 311 104 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑝  ∈  ℚ ) | 
						
							| 313 | 197 312 138 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ ) | 
						
							| 314 |  | max1 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑝 )  ∈  ℝ )  →  ( 𝐹 ‘ 𝑃 )  ≤  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 315 | 246 313 314 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 316 | 315 10 | breqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  𝑆 ) | 
						
							| 317 |  | leexp1a | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 318 | 246 308 241 310 316 317 | syl32anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 319 | 250 247 226 306 318 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑎 ) )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 320 | 245 319 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 321 | 2 18 237 | abvmul | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑝 ↑ 𝑘 )  ∈  ℚ  ∧  𝑏  ∈  ℚ )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 322 | 197 208 211 321 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 323 | 1 2 | qabvexp | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑝  ∈  ℚ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 324 | 197 312 241 323 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 325 | 324 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) )  ·  ( 𝐹 ‘ 𝑏 ) )  =  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 326 | 322 325 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  =  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 327 | 313 241 | reexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 328 | 2 18 | abvcl | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝑏  ∈  ℚ )  →  ( 𝐹 ‘ 𝑏 )  ∈  ℝ ) | 
						
							| 329 | 197 211 328 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  ℝ ) | 
						
							| 330 | 327 329 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ ) | 
						
							| 331 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 332 | 331 | breq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝐹 ‘ 𝑎 )  ≤  1  ↔  ( 𝐹 ‘ 𝑏 )  ≤  1 ) ) | 
						
							| 333 | 332 293 209 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑏 )  ≤  1 ) | 
						
							| 334 | 311 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  𝑝  ≠  0 ) | 
						
							| 335 | 197 312 334 140 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  <  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 336 |  | expgt0 | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∈  ℝ  ∧  𝑘  ∈  ℤ  ∧  0  <  ( 𝐹 ‘ 𝑝 ) )  →  0  <  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 337 | 313 297 335 336 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  <  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 338 |  | lemul2 | ⊢ ( ( ( 𝐹 ‘ 𝑏 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ∈  ℝ  ∧  0  <  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) )  →  ( ( 𝐹 ‘ 𝑏 )  ≤  1  ↔  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  1 ) ) ) | 
						
							| 339 | 329 296 327 337 338 | syl112anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑏 )  ≤  1  ↔  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  1 ) ) ) | 
						
							| 340 | 333 339 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  1 ) ) | 
						
							| 341 | 327 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 342 | 341 | mulridd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  1 )  =  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 343 | 340 342 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) | 
						
							| 344 | 143 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑝 )  ∈  ℝ+ ) | 
						
							| 345 | 344 | rpge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  0  ≤  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 346 |  | max2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑝 )  ∈  ℝ )  →  ( 𝐹 ‘ 𝑝 )  ≤  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 347 | 246 313 346 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑝 )  ≤  if ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑝 ) ,  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 348 | 347 10 | breqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ 𝑝 )  ≤  𝑆 ) | 
						
							| 349 |  | leexp1a | ⊢ ( ( ( ( 𝐹 ‘ 𝑝 )  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  ∧  ( 0  ≤  ( 𝐹 ‘ 𝑝 )  ∧  ( 𝐹 ‘ 𝑝 )  ≤  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 350 | 313 308 241 345 348 349 | syl32anc | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 351 | 330 327 226 343 350 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 )  ·  ( 𝐹 ‘ 𝑏 ) )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 352 | 326 351 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  ≤  ( 𝑆 ↑ 𝑘 ) ) | 
						
							| 353 | 219 221 226 226 320 352 | le2addd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  +  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( ( 𝑆 ↑ 𝑘 )  +  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 354 | 224 | rpcnd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 355 | 354 | 2timesd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  ( 𝑆 ↑ 𝑘 ) )  =  ( ( 𝑆 ↑ 𝑘 )  +  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 356 | 355 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 2  ·  ( 𝑆 ↑ 𝑘 ) )  =  ( ( 𝑆 ↑ 𝑘 )  +  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 357 | 353 356 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 ) )  +  ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 358 | 217 222 228 234 357 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 359 |  | fveq2 | ⊢ ( 1  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( 𝐹 ‘ 1 )  =  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) ) ) | 
						
							| 360 | 359 | breq1d | ⊢ ( 1  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) )  ↔  ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) ) )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 361 | 358 360 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( 1  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 362 | 196 361 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) ) )  →  ( ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 363 | 362 | anassrs | ⊢ ( ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 364 | 363 | rexlimdvva | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( ( 𝑃 ↑ 𝑘 )  gcd  ( 𝑝 ↑ 𝑘 ) )  =  ( ( ( 𝑃 ↑ 𝑘 )  ·  𝑎 )  +  ( ( 𝑝 ↑ 𝑘 )  ·  𝑏 ) )  →  ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 365 | 181 364 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 1 )  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 366 | 170 365 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  1  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 367 | 224 | rpregt0d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑆 ↑ 𝑘 )  ∈  ℝ  ∧  0  <  ( 𝑆 ↑ 𝑘 ) ) ) | 
						
							| 368 |  | ledivmul2 | ⊢ ( ( 1  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( ( 𝑆 ↑ 𝑘 )  ∈  ℝ  ∧  0  <  ( 𝑆 ↑ 𝑘 ) ) )  →  ( ( 1  /  ( 𝑆 ↑ 𝑘 ) )  ≤  2  ↔  1  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 369 | 265 135 367 368 | mp3an12i | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( 𝑆 ↑ 𝑘 ) )  ≤  2  ↔  1  ≤  ( 2  ·  ( 𝑆 ↑ 𝑘 ) ) ) ) | 
						
							| 370 | 366 369 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( 𝑆 ↑ 𝑘 ) )  ≤  2 ) | 
						
							| 371 | 165 370 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝑆 ) ↑ 𝑘 )  ≤  2 ) | 
						
							| 372 |  | reexpcl | ⊢ ( ( ( 1  /  𝑆 )  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  /  𝑆 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 373 | 147 172 372 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  𝑆 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 374 |  | lenlt | ⊢ ( ( ( ( 1  /  𝑆 ) ↑ 𝑘 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( ( 1  /  𝑆 ) ↑ 𝑘 )  ≤  2  ↔  ¬  2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 ) ) ) | 
						
							| 375 | 373 135 374 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  𝑆 ) ↑ 𝑘 )  ≤  2  ↔  ¬  2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 ) ) ) | 
						
							| 376 | 371 375 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ¬  2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 ) ) | 
						
							| 377 | 376 | pm2.21d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  ∧  𝑘  ∈  ℕ )  →  ( 2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 )  →  ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) ) | 
						
							| 378 | 377 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ( ∃ 𝑘  ∈  ℕ 2  <  ( ( 1  /  𝑆 ) ↑ 𝑘 )  →  ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) ) | 
						
							| 379 | 158 378 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑃  ≠  𝑝  ∧  ( 𝐹 ‘ 𝑝 )  <  1 ) )  →  ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 380 | 379 | expr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( 𝐹 ‘ 𝑝 )  <  1  →  ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) ) | 
						
							| 381 | 380 | pm2.01d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ¬  ( 𝐹 ‘ 𝑝 )  <  1 ) | 
						
							| 382 |  | fveq2 | ⊢ ( 𝑛  =  𝑝  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 383 | 382 | breq2d | ⊢ ( 𝑛  =  𝑝  →  ( 1  <  ( 𝐹 ‘ 𝑛 )  ↔  1  <  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 384 | 383 | notbid | ⊢ ( 𝑛  =  𝑝  →  ( ¬  1  <  ( 𝐹 ‘ 𝑛 )  ↔  ¬  1  <  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 385 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ∀ 𝑛  ∈  ℕ ¬  1  <  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 386 | 384 385 103 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ¬  1  <  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 387 |  | lttri3 | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑝 )  =  1  ↔  ( ¬  ( 𝐹 ‘ 𝑝 )  <  1  ∧  ¬  1  <  ( 𝐹 ‘ 𝑝 ) ) ) ) | 
						
							| 388 | 139 265 387 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( 𝐹 ‘ 𝑝 )  =  1  ↔  ( ¬  ( 𝐹 ‘ 𝑝 )  <  1  ∧  ¬  1  <  ( 𝐹 ‘ 𝑝 ) ) ) ) | 
						
							| 389 | 381 386 388 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝐹 ‘ 𝑝 )  =  1 ) | 
						
							| 390 | 112 134 389 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 )  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 391 | 110 390 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  𝑃  ≠  𝑝 )  →  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) | 
						
							| 392 | 391 | ex | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑃  ≠  𝑝  →  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) | 
						
							| 393 | 101 392 | pm2.61dne | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝐹 ‘ 𝑝 )  =  ( ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) | 
						
							| 394 | 1 2 5 50 393 | ostthlem2 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) | 
						
							| 395 |  | oveq2 | ⊢ ( 𝑎  =  𝑅  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 )  =  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) | 
						
							| 396 | 395 | mpteq2dv | ⊢ ( 𝑎  =  𝑅  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) )  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) | 
						
							| 397 | 396 | rspceeqv | ⊢ ( ( 𝑅  ∈  ℝ+  ∧  𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) )  →  ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) | 
						
							| 398 | 48 394 397 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℝ+ 𝐹  =  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |