Step |
Hyp |
Ref |
Expression |
1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
6 |
|
ostth3.2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
7 |
|
ostth3.3 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
8 |
|
ostth3.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) < 1 ) |
9 |
|
ostth3.5 |
⊢ 𝑅 = - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) |
10 |
|
ostth3.6 |
⊢ 𝑆 = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) |
11 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
13 |
|
eluz2b2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
16 |
|
nnq |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℚ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℚ ) |
18 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
19 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
20 |
5 17 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
21 |
15
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
22 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
23 |
2 18 22
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑃 ) ) |
24 |
5 17 21 23
|
syl3anc |
⊢ ( 𝜑 → 0 < ( 𝐹 ‘ 𝑃 ) ) |
25 |
20 24
|
elrpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
26 |
25
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ) |
27 |
15
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
28 |
14
|
simprd |
⊢ ( 𝜑 → 1 < 𝑃 ) |
29 |
27 28
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
30 |
26 29
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
31 |
30
|
renegcld |
⊢ ( 𝜑 → - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
32 |
9 31
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
34 |
|
logltb |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) ) |
35 |
25 33 34
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) ) |
36 |
8 35
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) |
37 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
38 |
36 37
|
breqtrdi |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < 0 ) |
39 |
29
|
rpcnd |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℂ ) |
40 |
39
|
mul01d |
⊢ ( 𝜑 → ( ( log ‘ 𝑃 ) · 0 ) = 0 ) |
41 |
38 40
|
breqtrrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( ( log ‘ 𝑃 ) · 0 ) ) |
42 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
43 |
26 42 29
|
ltdivmuld |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( ( log ‘ 𝑃 ) · 0 ) ) ) |
44 |
41 43
|
mpbird |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ) |
45 |
30
|
lt0neg1d |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ↔ 0 < - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) ) |
46 |
44 45
|
mpbid |
⊢ ( 𝜑 → 0 < - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
47 |
46 9
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑅 ) |
48 |
32 47
|
elrpd |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
49 |
1 2 3
|
padicabvcxp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
50 |
7 48 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
51 |
|
fveq2 |
⊢ ( 𝑦 = 𝑃 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝑦 = 𝑃 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
53 |
|
eqid |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
54 |
|
ovex |
⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ∈ V |
55 |
52 53 54
|
fvmpt |
⊢ ( 𝑃 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
56 |
17 55
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
57 |
3
|
padicval |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) ) |
58 |
7 17 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) ) |
59 |
21
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑃 = 0 ) |
60 |
59
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) |
61 |
15
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
62 |
61
|
exp1d |
⊢ ( 𝜑 → ( 𝑃 ↑ 1 ) = 𝑃 ) |
63 |
62
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = ( 𝑃 pCnt 𝑃 ) ) |
64 |
|
1z |
⊢ 1 ∈ ℤ |
65 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
66 |
7 64 65
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
67 |
63 66
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑃 ) = 1 ) |
68 |
67
|
negeqd |
⊢ ( 𝜑 → - ( 𝑃 pCnt 𝑃 ) = - 1 ) |
69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 ↑ - 1 ) ) |
70 |
|
neg1z |
⊢ - 1 ∈ ℤ |
71 |
70
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℤ ) |
72 |
61 21 71
|
cxpexpzd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 - 1 ) = ( 𝑃 ↑ - 1 ) ) |
73 |
69 72
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 ↑𝑐 - 1 ) ) |
74 |
58 60 73
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = ( 𝑃 ↑𝑐 - 1 ) ) |
75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) = ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) |
76 |
32
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
77 |
76
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑅 ) = - 𝑅 ) |
78 |
9
|
negeqi |
⊢ - 𝑅 = - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) |
79 |
30
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℂ ) |
80 |
79
|
negnegd |
⊢ ( 𝜑 → - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
81 |
78 80
|
syl5eq |
⊢ ( 𝜑 → - 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
82 |
77 81
|
eqtrd |
⊢ ( 𝜑 → ( - 1 · 𝑅 ) = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( - 1 · 𝑅 ) ) = ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) ) |
84 |
15
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
85 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
86 |
85
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
87 |
84 86 76
|
cxpmuld |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( - 1 · 𝑅 ) ) = ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) |
88 |
61 21 79
|
cxpefd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) = ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) ) ) |
89 |
26
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
90 |
29
|
rpne0d |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ≠ 0 ) |
91 |
89 39 90
|
divcan1d |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) = ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) ) = ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
93 |
25
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
94 |
88 92 93
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
95 |
83 87 94
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) = ( 𝐹 ‘ 𝑃 ) ) |
96 |
56 75 95
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) ) |
97 |
|
fveq2 |
⊢ ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑝 ) ) |
98 |
|
fveq2 |
⊢ ( 𝑃 = 𝑝 → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
99 |
97 98
|
eqeq12d |
⊢ ( 𝑃 = 𝑝 → ( ( 𝐹 ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) ↔ ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
100 |
96 99
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
102 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
103 |
102
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ∈ ℕ ) |
104 |
|
nnq |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℚ ) |
105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ∈ ℚ ) |
106 |
|
fveq2 |
⊢ ( 𝑦 = 𝑝 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ) |
107 |
106
|
oveq1d |
⊢ ( 𝑦 = 𝑝 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
108 |
|
ovex |
⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ∈ V |
109 |
107 53 108
|
fvmpt |
⊢ ( 𝑝 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
110 |
105 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
111 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑅 ∈ ℂ ) |
112 |
111
|
1cxpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 1 ↑𝑐 𝑅 ) = 1 ) |
113 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑃 ∈ ℙ ) |
114 |
3
|
padicval |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) ) |
115 |
113 105 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) ) |
116 |
103
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ≠ 0 ) |
117 |
116
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ 𝑝 = 0 ) |
118 |
117
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) |
119 |
|
pceq0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ ¬ 𝑃 ∥ 𝑝 ) ) |
120 |
7 102 119
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ ¬ 𝑃 ∥ 𝑝 ) ) |
121 |
|
dvdsprm |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∥ 𝑝 ↔ 𝑃 = 𝑝 ) ) |
122 |
12 121
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∥ 𝑝 ↔ 𝑃 = 𝑝 ) ) |
123 |
122
|
necon3bbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝑝 ↔ 𝑃 ≠ 𝑝 ) ) |
124 |
120 123
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ 𝑃 ≠ 𝑝 ) ) |
125 |
124
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 pCnt 𝑝 ) = 0 ) |
126 |
125
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → - ( 𝑃 pCnt 𝑝 ) = - 0 ) |
127 |
|
neg0 |
⊢ - 0 = 0 |
128 |
126 127
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → - ( 𝑃 pCnt 𝑝 ) = 0 ) |
129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) = ( 𝑃 ↑ 0 ) ) |
130 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑃 ∈ ℂ ) |
131 |
130
|
exp0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ 0 ) = 1 ) |
132 |
129 131
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) = 1 ) |
133 |
115 118 132
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = 1 ) |
134 |
133
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) = ( 1 ↑𝑐 𝑅 ) ) |
135 |
|
2re |
⊢ 2 ∈ ℝ |
136 |
135
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 2 ∈ ℝ ) |
137 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝐹 ∈ 𝐴 ) |
138 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
139 |
137 105 138
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
140 |
2 18 22
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ∧ 𝑝 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
141 |
137 105 116 140
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
142 |
139 141
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
143 |
142
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
144 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
145 |
143 144
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ+ ) |
146 |
10 145
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℝ+ ) |
147 |
146
|
rprecred |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 1 / 𝑆 ) ∈ ℝ ) |
148 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑝 ) < 1 ) |
149 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑃 ) < 1 ) |
150 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑝 ) = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑝 ) < 1 ↔ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) ) |
151 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) ) |
152 |
150 151
|
ifboth |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) < 1 ∧ ( 𝐹 ‘ 𝑃 ) < 1 ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) |
153 |
148 149 152
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) |
154 |
10 153
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 < 1 ) |
155 |
146
|
reclt1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝑆 < 1 ↔ 1 < ( 1 / 𝑆 ) ) ) |
156 |
154 155
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 1 < ( 1 / 𝑆 ) ) |
157 |
|
expnbnd |
⊢ ( ( 2 ∈ ℝ ∧ ( 1 / 𝑆 ) ∈ ℝ ∧ 1 < ( 1 / 𝑆 ) ) → ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
158 |
136 147 156 157
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
159 |
146
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℂ ) |
160 |
159
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑆 ∈ ℂ ) |
161 |
146
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ≠ 0 ) |
162 |
161
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑆 ≠ 0 ) |
163 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
164 |
163
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
165 |
160 162 164
|
exprecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) = ( 1 / ( 𝑆 ↑ 𝑘 ) ) ) |
166 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝐹 ∈ 𝐴 ) |
167 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
168 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
169 |
2 168 22
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
170 |
166 167 169
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 1 ) = 1 ) |
171 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ∈ ℕ ) |
172 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
173 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
174 |
171 172 173
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
175 |
174
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
176 |
102
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑝 ∈ ℕ ) |
177 |
|
nnexpcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
178 |
176 172 177
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
179 |
178
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
180 |
|
bezout |
⊢ ( ( ( 𝑃 ↑ 𝑘 ) ∈ ℤ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) |
181 |
175 179 180
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) |
182 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ≠ 𝑝 ) |
183 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ∈ ℙ ) |
184 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑝 ∈ ℙ ) |
185 |
|
prmrp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 gcd 𝑝 ) = 1 ↔ 𝑃 ≠ 𝑝 ) ) |
186 |
183 184 185
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( ( 𝑃 gcd 𝑝 ) = 1 ↔ 𝑃 ≠ 𝑝 ) ) |
187 |
182 186
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝑃 gcd 𝑝 ) = 1 ) |
188 |
187
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 gcd 𝑝 ) = 1 ) |
189 |
171
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
190 |
176
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
191 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
192 |
|
rppwr |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 gcd 𝑝 ) = 1 → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) ) |
193 |
189 190 191 192
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 gcd 𝑝 ) = 1 → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) ) |
194 |
188 193
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) |
195 |
194
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) |
196 |
195
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ↔ 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
197 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝐹 ∈ 𝐴 ) |
198 |
174
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
199 |
|
nnq |
⊢ ( ( 𝑃 ↑ 𝑘 ) ∈ ℕ → ( 𝑃 ↑ 𝑘 ) ∈ ℚ ) |
200 |
198 199
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℚ ) |
201 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑎 ∈ ℤ ) |
202 |
|
zq |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℚ ) |
203 |
201 202
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑎 ∈ ℚ ) |
204 |
|
qmulcl |
⊢ ( ( ( 𝑃 ↑ 𝑘 ) ∈ ℚ ∧ 𝑎 ∈ ℚ ) → ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) |
205 |
200 203 204
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) |
206 |
178
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
207 |
|
nnq |
⊢ ( ( 𝑝 ↑ 𝑘 ) ∈ ℕ → ( 𝑝 ↑ 𝑘 ) ∈ ℚ ) |
208 |
206 207
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℚ ) |
209 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑏 ∈ ℤ ) |
210 |
|
zq |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℚ ) |
211 |
209 210
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑏 ∈ ℚ ) |
212 |
|
qmulcl |
⊢ ( ( ( 𝑝 ↑ 𝑘 ) ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) |
213 |
208 211 212
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) |
214 |
|
qaddcl |
⊢ ( ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) |
215 |
205 213 214
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) |
216 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
217 |
197 215 216
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
218 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ∈ ℝ ) |
219 |
197 205 218
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ∈ ℝ ) |
220 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℝ ) |
221 |
197 213 220
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℝ ) |
222 |
219 221
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
223 |
|
rpexpcl |
⊢ ( ( 𝑆 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ+ ) |
224 |
146 163 223
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ+ ) |
225 |
224
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) |
226 |
225
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) |
227 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) ∈ ℝ ) |
228 |
135 226 227
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) ∈ ℝ ) |
229 |
|
qex |
⊢ ℚ ∈ V |
230 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
231 |
1 230
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
232 |
229 231
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
233 |
2 18 232
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
234 |
197 205 213 233
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
235 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
236 |
1 235
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
237 |
229 236
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
238 |
2 18 237
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℚ ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) ) |
239 |
197 200 203 238
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) ) |
240 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑃 ∈ ℚ ) |
241 |
172
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑘 ∈ ℕ0 ) |
242 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
243 |
197 240 241 242
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
244 |
243
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ) |
245 |
239 244
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ) |
246 |
197 240 19
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
247 |
246 241
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℝ ) |
248 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
249 |
197 203 248
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
250 |
247 249
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ∈ ℝ ) |
251 |
|
elz |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℝ ∧ ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) ) |
252 |
251
|
simprbi |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) |
253 |
252
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) |
254 |
2 22
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
255 |
5 254
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
256 |
|
0le1 |
⊢ 0 ≤ 1 |
257 |
255 256
|
eqbrtrdi |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ 1 ) |
258 |
257
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 0 ) ≤ 1 ) |
259 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 0 ) ) |
260 |
259
|
breq1d |
⊢ ( 𝑎 = 0 → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( 𝐹 ‘ 0 ) ≤ 1 ) ) |
261 |
258 260
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 = 0 → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
262 |
|
nnq |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℚ ) |
263 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
264 |
5 262 263
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
265 |
|
1re |
⊢ 1 ∈ ℝ |
266 |
|
lenlt |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
267 |
264 265 266
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
268 |
267
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
269 |
6 268
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ) |
270 |
|
fveq2 |
⊢ ( 𝑛 = 𝑎 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑎 ) ) |
271 |
270
|
breq1d |
⊢ ( 𝑛 = 𝑎 → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
272 |
271
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
273 |
269 272
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
275 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → 𝐹 ∈ 𝐴 ) |
276 |
202
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → 𝑎 ∈ ℚ ) |
277 |
|
eqid |
⊢ ( invg ‘ 𝑄 ) = ( invg ‘ 𝑄 ) |
278 |
2 18 277
|
abvneg |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
279 |
275 276 278
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
280 |
|
fveq2 |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ) |
281 |
280
|
breq1d |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ≤ 1 ) ) |
282 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ) |
283 |
1
|
qrngneg |
⊢ ( 𝑎 ∈ ℚ → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) = - 𝑎 ) |
284 |
276 283
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) = - 𝑎 ) |
285 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → - 𝑎 ∈ ℕ ) |
286 |
284 285
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ∈ ℕ ) |
287 |
281 282 286
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ≤ 1 ) |
288 |
279 287
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
289 |
288
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( - 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
290 |
261 274 289
|
3jaod |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
291 |
253 290
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
292 |
291
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
293 |
292
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
294 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 → ( 𝑎 ∈ ℤ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
295 |
293 201 294
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
296 |
265
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 1 ∈ ℝ ) |
297 |
163
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑘 ∈ ℤ ) |
298 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( 𝐹 ‘ 𝑃 ) ) |
299 |
|
expgt0 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( 𝐹 ‘ 𝑃 ) ) → 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
300 |
246 297 298 299
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
301 |
|
lemul2 |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) ) |
302 |
249 296 247 300 301
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) ) |
303 |
295 302
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) |
304 |
247
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℂ ) |
305 |
304
|
mulid1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
306 |
303 305
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
307 |
146
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℝ ) |
308 |
307
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑆 ∈ ℝ ) |
309 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
310 |
309
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑃 ) ) |
311 |
176
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ∈ ℕ ) |
312 |
311 104
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ∈ ℚ ) |
313 |
197 312 138
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
314 |
|
max1 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑃 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
315 |
246 313 314
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
316 |
315 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ 𝑆 ) |
317 |
|
leexp1a |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
318 |
246 308 241 310 316 317
|
syl32anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
319 |
250 247 226 306 318
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
320 |
245 319
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
321 |
2 18 237
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) ) |
322 |
197 208 211 321
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) ) |
323 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
324 |
197 312 241 323
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
325 |
324
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) = ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ) |
326 |
322 325
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ) |
327 |
313 241
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℝ ) |
328 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑏 ∈ ℚ ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
329 |
197 211 328
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
330 |
327 329
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) |
331 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
332 |
331
|
breq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( 𝐹 ‘ 𝑏 ) ≤ 1 ) ) |
333 |
332 293 209
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑏 ) ≤ 1 ) |
334 |
311
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ≠ 0 ) |
335 |
197 312 334 140
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
336 |
|
expgt0 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( 𝐹 ‘ 𝑝 ) ) → 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
337 |
313 297 335 336
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
338 |
|
lemul2 |
⊢ ( ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑏 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) ) |
339 |
329 296 327 337 338
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑏 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) ) |
340 |
333 339
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) |
341 |
327
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℂ ) |
342 |
341
|
mulid1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
343 |
340 342
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
344 |
143
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
345 |
344
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑝 ) ) |
346 |
|
max2 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑝 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
347 |
246 313 346
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
348 |
347 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ≤ 𝑆 ) |
349 |
|
leexp1a |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑝 ) ≤ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
350 |
313 308 241 345 348 349
|
syl32anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
351 |
330 327 226 343 350
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
352 |
326 351
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
353 |
219 221 226 226 320 352
|
le2addd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
354 |
224
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℂ ) |
355 |
354
|
2timesd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) = ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
356 |
355
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) = ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
357 |
353 356
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
358 |
217 222 228 234 357
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
359 |
|
fveq2 |
⊢ ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
360 |
359
|
breq1d |
⊢ ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ↔ ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
361 |
358 360
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
362 |
196 361
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
363 |
362
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
364 |
363
|
rexlimdvva |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
365 |
181 364
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
366 |
170 365
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
367 |
224
|
rpregt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑆 ↑ 𝑘 ) ) ) |
368 |
|
ledivmul2 |
⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ( 𝑆 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑆 ↑ 𝑘 ) ) ) → ( ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ↔ 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
369 |
265 135 367 368
|
mp3an12i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ↔ 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
370 |
366 369
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ) |
371 |
165 370
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ) |
372 |
|
reexpcl |
⊢ ( ( ( 1 / 𝑆 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ) |
373 |
147 172 372
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ) |
374 |
|
lenlt |
⊢ ( ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ↔ ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) ) |
375 |
373 135 374
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ↔ ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) ) |
376 |
371 375
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
377 |
376
|
pm2.21d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
378 |
377
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
379 |
158 378
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) |
380 |
379
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐹 ‘ 𝑝 ) < 1 → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
381 |
380
|
pm2.01d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) |
382 |
|
fveq2 |
⊢ ( 𝑛 = 𝑝 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑝 ) ) |
383 |
382
|
breq2d |
⊢ ( 𝑛 = 𝑝 → ( 1 < ( 𝐹 ‘ 𝑛 ) ↔ 1 < ( 𝐹 ‘ 𝑝 ) ) ) |
384 |
383
|
notbid |
⊢ ( 𝑛 = 𝑝 → ( ¬ 1 < ( 𝐹 ‘ 𝑛 ) ↔ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) |
385 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
386 |
384 385 103
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) |
387 |
|
lttri3 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑝 ) = 1 ↔ ( ¬ ( 𝐹 ‘ 𝑝 ) < 1 ∧ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) ) |
388 |
139 265 387
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐹 ‘ 𝑝 ) = 1 ↔ ( ¬ ( 𝐹 ‘ 𝑝 ) < 1 ∧ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) ) |
389 |
381 386 388
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = 1 ) |
390 |
112 134 389
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) = ( 𝐹 ‘ 𝑝 ) ) |
391 |
110 390
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
392 |
391
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ≠ 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
393 |
101 392
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
394 |
1 2 5 50 393
|
ostthlem2 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
395 |
|
oveq2 |
⊢ ( 𝑎 = 𝑅 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
396 |
395
|
mpteq2dv |
⊢ ( 𝑎 = 𝑅 → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
397 |
396
|
rspceeqv |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
398 |
48 394 397
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |