| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 |  | ostth.k |  |-  K = ( x e. QQ |-> if ( x = 0 , 0 , 1 ) ) | 
						
							| 5 |  | ostth.1 |  |-  ( ph -> F e. A ) | 
						
							| 6 |  | ostth3.2 |  |-  ( ph -> A. n e. NN -. 1 < ( F ` n ) ) | 
						
							| 7 |  | ostth3.3 |  |-  ( ph -> P e. Prime ) | 
						
							| 8 |  | ostth3.4 |  |-  ( ph -> ( F ` P ) < 1 ) | 
						
							| 9 |  | ostth3.5 |  |-  R = -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) | 
						
							| 10 |  | ostth3.6 |  |-  S = if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) | 
						
							| 11 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ph -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 13 |  | eluz2b2 |  |-  ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) ) | 
						
							| 14 | 12 13 | sylib |  |-  ( ph -> ( P e. NN /\ 1 < P ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> P e. NN ) | 
						
							| 16 |  | nnq |  |-  ( P e. NN -> P e. QQ ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> P e. QQ ) | 
						
							| 18 | 1 | qrngbas |  |-  QQ = ( Base ` Q ) | 
						
							| 19 | 2 18 | abvcl |  |-  ( ( F e. A /\ P e. QQ ) -> ( F ` P ) e. RR ) | 
						
							| 20 | 5 17 19 | syl2anc |  |-  ( ph -> ( F ` P ) e. RR ) | 
						
							| 21 | 15 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 22 | 1 | qrng0 |  |-  0 = ( 0g ` Q ) | 
						
							| 23 | 2 18 22 | abvgt0 |  |-  ( ( F e. A /\ P e. QQ /\ P =/= 0 ) -> 0 < ( F ` P ) ) | 
						
							| 24 | 5 17 21 23 | syl3anc |  |-  ( ph -> 0 < ( F ` P ) ) | 
						
							| 25 | 20 24 | elrpd |  |-  ( ph -> ( F ` P ) e. RR+ ) | 
						
							| 26 | 25 | relogcld |  |-  ( ph -> ( log ` ( F ` P ) ) e. RR ) | 
						
							| 27 | 15 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 28 | 14 | simprd |  |-  ( ph -> 1 < P ) | 
						
							| 29 | 27 28 | rplogcld |  |-  ( ph -> ( log ` P ) e. RR+ ) | 
						
							| 30 | 26 29 | rerpdivcld |  |-  ( ph -> ( ( log ` ( F ` P ) ) / ( log ` P ) ) e. RR ) | 
						
							| 31 | 30 | renegcld |  |-  ( ph -> -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) e. RR ) | 
						
							| 32 | 9 31 | eqeltrid |  |-  ( ph -> R e. RR ) | 
						
							| 33 |  | 1rp |  |-  1 e. RR+ | 
						
							| 34 |  | logltb |  |-  ( ( ( F ` P ) e. RR+ /\ 1 e. RR+ ) -> ( ( F ` P ) < 1 <-> ( log ` ( F ` P ) ) < ( log ` 1 ) ) ) | 
						
							| 35 | 25 33 34 | sylancl |  |-  ( ph -> ( ( F ` P ) < 1 <-> ( log ` ( F ` P ) ) < ( log ` 1 ) ) ) | 
						
							| 36 | 8 35 | mpbid |  |-  ( ph -> ( log ` ( F ` P ) ) < ( log ` 1 ) ) | 
						
							| 37 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 38 | 36 37 | breqtrdi |  |-  ( ph -> ( log ` ( F ` P ) ) < 0 ) | 
						
							| 39 | 29 | rpcnd |  |-  ( ph -> ( log ` P ) e. CC ) | 
						
							| 40 | 39 | mul01d |  |-  ( ph -> ( ( log ` P ) x. 0 ) = 0 ) | 
						
							| 41 | 38 40 | breqtrrd |  |-  ( ph -> ( log ` ( F ` P ) ) < ( ( log ` P ) x. 0 ) ) | 
						
							| 42 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 43 | 26 42 29 | ltdivmuld |  |-  ( ph -> ( ( ( log ` ( F ` P ) ) / ( log ` P ) ) < 0 <-> ( log ` ( F ` P ) ) < ( ( log ` P ) x. 0 ) ) ) | 
						
							| 44 | 41 43 | mpbird |  |-  ( ph -> ( ( log ` ( F ` P ) ) / ( log ` P ) ) < 0 ) | 
						
							| 45 | 30 | lt0neg1d |  |-  ( ph -> ( ( ( log ` ( F ` P ) ) / ( log ` P ) ) < 0 <-> 0 < -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) ) | 
						
							| 46 | 44 45 | mpbid |  |-  ( ph -> 0 < -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) | 
						
							| 47 | 46 9 | breqtrrdi |  |-  ( ph -> 0 < R ) | 
						
							| 48 | 32 47 | elrpd |  |-  ( ph -> R e. RR+ ) | 
						
							| 49 | 1 2 3 | padicabvcxp |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) e. A ) | 
						
							| 50 | 7 48 49 | syl2anc |  |-  ( ph -> ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) e. A ) | 
						
							| 51 |  | fveq2 |  |-  ( y = P -> ( ( J ` P ) ` y ) = ( ( J ` P ) ` P ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( y = P -> ( ( ( J ` P ) ` y ) ^c R ) = ( ( ( J ` P ) ` P ) ^c R ) ) | 
						
							| 53 |  | eqid |  |-  ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) | 
						
							| 54 |  | ovex |  |-  ( ( ( J ` P ) ` P ) ^c R ) e. _V | 
						
							| 55 | 52 53 54 | fvmpt |  |-  ( P e. QQ -> ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` P ) = ( ( ( J ` P ) ` P ) ^c R ) ) | 
						
							| 56 | 17 55 | syl |  |-  ( ph -> ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` P ) = ( ( ( J ` P ) ` P ) ^c R ) ) | 
						
							| 57 | 3 | padicval |  |-  ( ( P e. Prime /\ P e. QQ ) -> ( ( J ` P ) ` P ) = if ( P = 0 , 0 , ( P ^ -u ( P pCnt P ) ) ) ) | 
						
							| 58 | 7 17 57 | syl2anc |  |-  ( ph -> ( ( J ` P ) ` P ) = if ( P = 0 , 0 , ( P ^ -u ( P pCnt P ) ) ) ) | 
						
							| 59 | 21 | neneqd |  |-  ( ph -> -. P = 0 ) | 
						
							| 60 | 59 | iffalsed |  |-  ( ph -> if ( P = 0 , 0 , ( P ^ -u ( P pCnt P ) ) ) = ( P ^ -u ( P pCnt P ) ) ) | 
						
							| 61 | 15 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 62 | 61 | exp1d |  |-  ( ph -> ( P ^ 1 ) = P ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ph -> ( P pCnt ( P ^ 1 ) ) = ( P pCnt P ) ) | 
						
							| 64 |  | 1z |  |-  1 e. ZZ | 
						
							| 65 |  | pcid |  |-  ( ( P e. Prime /\ 1 e. ZZ ) -> ( P pCnt ( P ^ 1 ) ) = 1 ) | 
						
							| 66 | 7 64 65 | sylancl |  |-  ( ph -> ( P pCnt ( P ^ 1 ) ) = 1 ) | 
						
							| 67 | 63 66 | eqtr3d |  |-  ( ph -> ( P pCnt P ) = 1 ) | 
						
							| 68 | 67 | negeqd |  |-  ( ph -> -u ( P pCnt P ) = -u 1 ) | 
						
							| 69 | 68 | oveq2d |  |-  ( ph -> ( P ^ -u ( P pCnt P ) ) = ( P ^ -u 1 ) ) | 
						
							| 70 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 71 | 70 | a1i |  |-  ( ph -> -u 1 e. ZZ ) | 
						
							| 72 | 61 21 71 | cxpexpzd |  |-  ( ph -> ( P ^c -u 1 ) = ( P ^ -u 1 ) ) | 
						
							| 73 | 69 72 | eqtr4d |  |-  ( ph -> ( P ^ -u ( P pCnt P ) ) = ( P ^c -u 1 ) ) | 
						
							| 74 | 58 60 73 | 3eqtrd |  |-  ( ph -> ( ( J ` P ) ` P ) = ( P ^c -u 1 ) ) | 
						
							| 75 | 74 | oveq1d |  |-  ( ph -> ( ( ( J ` P ) ` P ) ^c R ) = ( ( P ^c -u 1 ) ^c R ) ) | 
						
							| 76 | 32 | recnd |  |-  ( ph -> R e. CC ) | 
						
							| 77 | 76 | mulm1d |  |-  ( ph -> ( -u 1 x. R ) = -u R ) | 
						
							| 78 | 9 | negeqi |  |-  -u R = -u -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) | 
						
							| 79 | 30 | recnd |  |-  ( ph -> ( ( log ` ( F ` P ) ) / ( log ` P ) ) e. CC ) | 
						
							| 80 | 79 | negnegd |  |-  ( ph -> -u -u ( ( log ` ( F ` P ) ) / ( log ` P ) ) = ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) | 
						
							| 81 | 78 80 | eqtrid |  |-  ( ph -> -u R = ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) | 
						
							| 82 | 77 81 | eqtrd |  |-  ( ph -> ( -u 1 x. R ) = ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ph -> ( P ^c ( -u 1 x. R ) ) = ( P ^c ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) ) | 
						
							| 84 | 15 | nnrpd |  |-  ( ph -> P e. RR+ ) | 
						
							| 85 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 86 | 85 | a1i |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 87 | 84 86 76 | cxpmuld |  |-  ( ph -> ( P ^c ( -u 1 x. R ) ) = ( ( P ^c -u 1 ) ^c R ) ) | 
						
							| 88 | 61 21 79 | cxpefd |  |-  ( ph -> ( P ^c ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) = ( exp ` ( ( ( log ` ( F ` P ) ) / ( log ` P ) ) x. ( log ` P ) ) ) ) | 
						
							| 89 | 26 | recnd |  |-  ( ph -> ( log ` ( F ` P ) ) e. CC ) | 
						
							| 90 | 29 | rpne0d |  |-  ( ph -> ( log ` P ) =/= 0 ) | 
						
							| 91 | 89 39 90 | divcan1d |  |-  ( ph -> ( ( ( log ` ( F ` P ) ) / ( log ` P ) ) x. ( log ` P ) ) = ( log ` ( F ` P ) ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ph -> ( exp ` ( ( ( log ` ( F ` P ) ) / ( log ` P ) ) x. ( log ` P ) ) ) = ( exp ` ( log ` ( F ` P ) ) ) ) | 
						
							| 93 | 25 | reeflogd |  |-  ( ph -> ( exp ` ( log ` ( F ` P ) ) ) = ( F ` P ) ) | 
						
							| 94 | 88 92 93 | 3eqtrd |  |-  ( ph -> ( P ^c ( ( log ` ( F ` P ) ) / ( log ` P ) ) ) = ( F ` P ) ) | 
						
							| 95 | 83 87 94 | 3eqtr3d |  |-  ( ph -> ( ( P ^c -u 1 ) ^c R ) = ( F ` P ) ) | 
						
							| 96 | 56 75 95 | 3eqtrrd |  |-  ( ph -> ( F ` P ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` P ) ) | 
						
							| 97 |  | fveq2 |  |-  ( P = p -> ( F ` P ) = ( F ` p ) ) | 
						
							| 98 |  | fveq2 |  |-  ( P = p -> ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` P ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) | 
						
							| 99 | 97 98 | eqeq12d |  |-  ( P = p -> ( ( F ` P ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` P ) <-> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) ) | 
						
							| 100 | 96 99 | syl5ibcom |  |-  ( ph -> ( P = p -> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ph /\ p e. Prime ) -> ( P = p -> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) ) | 
						
							| 102 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 103 | 102 | ad2antlr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> p e. NN ) | 
						
							| 104 |  | nnq |  |-  ( p e. NN -> p e. QQ ) | 
						
							| 105 | 103 104 | syl |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> p e. QQ ) | 
						
							| 106 |  | fveq2 |  |-  ( y = p -> ( ( J ` P ) ` y ) = ( ( J ` P ) ` p ) ) | 
						
							| 107 | 106 | oveq1d |  |-  ( y = p -> ( ( ( J ` P ) ` y ) ^c R ) = ( ( ( J ` P ) ` p ) ^c R ) ) | 
						
							| 108 |  | ovex |  |-  ( ( ( J ` P ) ` p ) ^c R ) e. _V | 
						
							| 109 | 107 53 108 | fvmpt |  |-  ( p e. QQ -> ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) = ( ( ( J ` P ) ` p ) ^c R ) ) | 
						
							| 110 | 105 109 | syl |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) = ( ( ( J ` P ) ` p ) ^c R ) ) | 
						
							| 111 | 76 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> R e. CC ) | 
						
							| 112 | 111 | 1cxpd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( 1 ^c R ) = 1 ) | 
						
							| 113 | 7 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> P e. Prime ) | 
						
							| 114 | 3 | padicval |  |-  ( ( P e. Prime /\ p e. QQ ) -> ( ( J ` P ) ` p ) = if ( p = 0 , 0 , ( P ^ -u ( P pCnt p ) ) ) ) | 
						
							| 115 | 113 105 114 | syl2anc |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( J ` P ) ` p ) = if ( p = 0 , 0 , ( P ^ -u ( P pCnt p ) ) ) ) | 
						
							| 116 | 103 | nnne0d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> p =/= 0 ) | 
						
							| 117 | 116 | neneqd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> -. p = 0 ) | 
						
							| 118 | 117 | iffalsed |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> if ( p = 0 , 0 , ( P ^ -u ( P pCnt p ) ) ) = ( P ^ -u ( P pCnt p ) ) ) | 
						
							| 119 |  | pceq0 |  |-  ( ( P e. Prime /\ p e. NN ) -> ( ( P pCnt p ) = 0 <-> -. P || p ) ) | 
						
							| 120 | 7 102 119 | syl2an |  |-  ( ( ph /\ p e. Prime ) -> ( ( P pCnt p ) = 0 <-> -. P || p ) ) | 
						
							| 121 |  | dvdsprm |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ p e. Prime ) -> ( P || p <-> P = p ) ) | 
						
							| 122 | 12 121 | sylan |  |-  ( ( ph /\ p e. Prime ) -> ( P || p <-> P = p ) ) | 
						
							| 123 | 122 | necon3bbid |  |-  ( ( ph /\ p e. Prime ) -> ( -. P || p <-> P =/= p ) ) | 
						
							| 124 | 120 123 | bitrd |  |-  ( ( ph /\ p e. Prime ) -> ( ( P pCnt p ) = 0 <-> P =/= p ) ) | 
						
							| 125 | 124 | biimpar |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( P pCnt p ) = 0 ) | 
						
							| 126 | 125 | negeqd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> -u ( P pCnt p ) = -u 0 ) | 
						
							| 127 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 128 | 126 127 | eqtrdi |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> -u ( P pCnt p ) = 0 ) | 
						
							| 129 | 128 | oveq2d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( P ^ -u ( P pCnt p ) ) = ( P ^ 0 ) ) | 
						
							| 130 | 61 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> P e. CC ) | 
						
							| 131 | 130 | exp0d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( P ^ 0 ) = 1 ) | 
						
							| 132 | 129 131 | eqtrd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( P ^ -u ( P pCnt p ) ) = 1 ) | 
						
							| 133 | 115 118 132 | 3eqtrd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( J ` P ) ` p ) = 1 ) | 
						
							| 134 | 133 | oveq1d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( ( J ` P ) ` p ) ^c R ) = ( 1 ^c R ) ) | 
						
							| 135 |  | 2re |  |-  2 e. RR | 
						
							| 136 | 135 | a1i |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> 2 e. RR ) | 
						
							| 137 | 5 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> F e. A ) | 
						
							| 138 | 2 18 | abvcl |  |-  ( ( F e. A /\ p e. QQ ) -> ( F ` p ) e. RR ) | 
						
							| 139 | 137 105 138 | syl2anc |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( F ` p ) e. RR ) | 
						
							| 140 | 2 18 22 | abvgt0 |  |-  ( ( F e. A /\ p e. QQ /\ p =/= 0 ) -> 0 < ( F ` p ) ) | 
						
							| 141 | 137 105 116 140 | syl3anc |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> 0 < ( F ` p ) ) | 
						
							| 142 | 139 141 | elrpd |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( F ` p ) e. RR+ ) | 
						
							| 143 | 142 | adantrr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( F ` p ) e. RR+ ) | 
						
							| 144 | 25 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( F ` P ) e. RR+ ) | 
						
							| 145 | 143 144 | ifcld |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) e. RR+ ) | 
						
							| 146 | 10 145 | eqeltrid |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> S e. RR+ ) | 
						
							| 147 | 146 | rprecred |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( 1 / S ) e. RR ) | 
						
							| 148 |  | simprr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( F ` p ) < 1 ) | 
						
							| 149 | 8 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( F ` P ) < 1 ) | 
						
							| 150 |  | breq1 |  |-  ( ( F ` p ) = if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) -> ( ( F ` p ) < 1 <-> if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) < 1 ) ) | 
						
							| 151 |  | breq1 |  |-  ( ( F ` P ) = if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) -> ( ( F ` P ) < 1 <-> if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) < 1 ) ) | 
						
							| 152 | 150 151 | ifboth |  |-  ( ( ( F ` p ) < 1 /\ ( F ` P ) < 1 ) -> if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) < 1 ) | 
						
							| 153 | 148 149 152 | syl2anc |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) < 1 ) | 
						
							| 154 | 10 153 | eqbrtrid |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> S < 1 ) | 
						
							| 155 | 146 | reclt1d |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( S < 1 <-> 1 < ( 1 / S ) ) ) | 
						
							| 156 | 154 155 | mpbid |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> 1 < ( 1 / S ) ) | 
						
							| 157 |  | expnbnd |  |-  ( ( 2 e. RR /\ ( 1 / S ) e. RR /\ 1 < ( 1 / S ) ) -> E. k e. NN 2 < ( ( 1 / S ) ^ k ) ) | 
						
							| 158 | 136 147 156 157 | syl3anc |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> E. k e. NN 2 < ( ( 1 / S ) ^ k ) ) | 
						
							| 159 | 146 | rpcnd |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> S e. CC ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> S e. CC ) | 
						
							| 161 | 146 | rpne0d |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> S =/= 0 ) | 
						
							| 162 | 161 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> S =/= 0 ) | 
						
							| 163 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 164 | 163 | adantl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> k e. ZZ ) | 
						
							| 165 | 160 162 164 | exprecd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( 1 / S ) ^ k ) = ( 1 / ( S ^ k ) ) ) | 
						
							| 166 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> F e. A ) | 
						
							| 167 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 168 | 1 | qrng1 |  |-  1 = ( 1r ` Q ) | 
						
							| 169 | 2 168 22 | abv1z |  |-  ( ( F e. A /\ 1 =/= 0 ) -> ( F ` 1 ) = 1 ) | 
						
							| 170 | 166 167 169 | sylancl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( F ` 1 ) = 1 ) | 
						
							| 171 | 15 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> P e. NN ) | 
						
							| 172 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 173 |  | nnexpcl |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN ) | 
						
							| 174 | 171 172 173 | syl2an |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( P ^ k ) e. NN ) | 
						
							| 175 | 174 | nnzd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( P ^ k ) e. ZZ ) | 
						
							| 176 | 102 | ad2antlr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> p e. NN ) | 
						
							| 177 |  | nnexpcl |  |-  ( ( p e. NN /\ k e. NN0 ) -> ( p ^ k ) e. NN ) | 
						
							| 178 | 176 172 177 | syl2an |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( p ^ k ) e. NN ) | 
						
							| 179 | 178 | nnzd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( p ^ k ) e. ZZ ) | 
						
							| 180 |  | bezout |  |-  ( ( ( P ^ k ) e. ZZ /\ ( p ^ k ) e. ZZ ) -> E. a e. ZZ E. b e. ZZ ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) | 
						
							| 181 | 175 179 180 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> E. a e. ZZ E. b e. ZZ ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) | 
						
							| 182 |  | simprl |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> P =/= p ) | 
						
							| 183 | 7 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> P e. Prime ) | 
						
							| 184 |  | simplr |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> p e. Prime ) | 
						
							| 185 |  | prmrp |  |-  ( ( P e. Prime /\ p e. Prime ) -> ( ( P gcd p ) = 1 <-> P =/= p ) ) | 
						
							| 186 | 183 184 185 | syl2anc |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( ( P gcd p ) = 1 <-> P =/= p ) ) | 
						
							| 187 | 182 186 | mpbird |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( P gcd p ) = 1 ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( P gcd p ) = 1 ) | 
						
							| 189 | 171 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> P e. NN ) | 
						
							| 190 | 176 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> p e. NN ) | 
						
							| 191 |  | simpr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> k e. NN ) | 
						
							| 192 |  | rppwr |  |-  ( ( P e. NN /\ p e. NN /\ k e. NN ) -> ( ( P gcd p ) = 1 -> ( ( P ^ k ) gcd ( p ^ k ) ) = 1 ) ) | 
						
							| 193 | 189 190 191 192 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( P gcd p ) = 1 -> ( ( P ^ k ) gcd ( p ^ k ) ) = 1 ) ) | 
						
							| 194 | 188 193 | mpd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( P ^ k ) gcd ( p ^ k ) ) = 1 ) | 
						
							| 195 | 194 | adantrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( P ^ k ) gcd ( p ^ k ) ) = 1 ) | 
						
							| 196 | 195 | eqeq1d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) <-> 1 = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) ) | 
						
							| 197 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> F e. A ) | 
						
							| 198 | 174 | adantrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( P ^ k ) e. NN ) | 
						
							| 199 |  | nnq |  |-  ( ( P ^ k ) e. NN -> ( P ^ k ) e. QQ ) | 
						
							| 200 | 198 199 | syl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( P ^ k ) e. QQ ) | 
						
							| 201 |  | simprrl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> a e. ZZ ) | 
						
							| 202 |  | zq |  |-  ( a e. ZZ -> a e. QQ ) | 
						
							| 203 | 201 202 | syl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> a e. QQ ) | 
						
							| 204 |  | qmulcl |  |-  ( ( ( P ^ k ) e. QQ /\ a e. QQ ) -> ( ( P ^ k ) x. a ) e. QQ ) | 
						
							| 205 | 200 203 204 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( P ^ k ) x. a ) e. QQ ) | 
						
							| 206 | 178 | adantrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( p ^ k ) e. NN ) | 
						
							| 207 |  | nnq |  |-  ( ( p ^ k ) e. NN -> ( p ^ k ) e. QQ ) | 
						
							| 208 | 206 207 | syl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( p ^ k ) e. QQ ) | 
						
							| 209 |  | simprrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> b e. ZZ ) | 
						
							| 210 |  | zq |  |-  ( b e. ZZ -> b e. QQ ) | 
						
							| 211 | 209 210 | syl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> b e. QQ ) | 
						
							| 212 |  | qmulcl |  |-  ( ( ( p ^ k ) e. QQ /\ b e. QQ ) -> ( ( p ^ k ) x. b ) e. QQ ) | 
						
							| 213 | 208 211 212 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( p ^ k ) x. b ) e. QQ ) | 
						
							| 214 |  | qaddcl |  |-  ( ( ( ( P ^ k ) x. a ) e. QQ /\ ( ( p ^ k ) x. b ) e. QQ ) -> ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) e. QQ ) | 
						
							| 215 | 205 213 214 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) e. QQ ) | 
						
							| 216 | 2 18 | abvcl |  |-  ( ( F e. A /\ ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) e. QQ ) -> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) e. RR ) | 
						
							| 217 | 197 215 216 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) e. RR ) | 
						
							| 218 | 2 18 | abvcl |  |-  ( ( F e. A /\ ( ( P ^ k ) x. a ) e. QQ ) -> ( F ` ( ( P ^ k ) x. a ) ) e. RR ) | 
						
							| 219 | 197 205 218 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( P ^ k ) x. a ) ) e. RR ) | 
						
							| 220 | 2 18 | abvcl |  |-  ( ( F e. A /\ ( ( p ^ k ) x. b ) e. QQ ) -> ( F ` ( ( p ^ k ) x. b ) ) e. RR ) | 
						
							| 221 | 197 213 220 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( p ^ k ) x. b ) ) e. RR ) | 
						
							| 222 | 219 221 | readdcld |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` ( ( P ^ k ) x. a ) ) + ( F ` ( ( p ^ k ) x. b ) ) ) e. RR ) | 
						
							| 223 |  | rpexpcl |  |-  ( ( S e. RR+ /\ k e. ZZ ) -> ( S ^ k ) e. RR+ ) | 
						
							| 224 | 146 163 223 | syl2an |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( S ^ k ) e. RR+ ) | 
						
							| 225 | 224 | rpred |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( S ^ k ) e. RR ) | 
						
							| 226 | 225 | adantrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( S ^ k ) e. RR ) | 
						
							| 227 |  | remulcl |  |-  ( ( 2 e. RR /\ ( S ^ k ) e. RR ) -> ( 2 x. ( S ^ k ) ) e. RR ) | 
						
							| 228 | 135 226 227 | sylancr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( 2 x. ( S ^ k ) ) e. RR ) | 
						
							| 229 |  | qex |  |-  QQ e. _V | 
						
							| 230 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 231 | 1 230 | ressplusg |  |-  ( QQ e. _V -> + = ( +g ` Q ) ) | 
						
							| 232 | 229 231 | ax-mp |  |-  + = ( +g ` Q ) | 
						
							| 233 | 2 18 232 | abvtri |  |-  ( ( F e. A /\ ( ( P ^ k ) x. a ) e. QQ /\ ( ( p ^ k ) x. b ) e. QQ ) -> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) <_ ( ( F ` ( ( P ^ k ) x. a ) ) + ( F ` ( ( p ^ k ) x. b ) ) ) ) | 
						
							| 234 | 197 205 213 233 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) <_ ( ( F ` ( ( P ^ k ) x. a ) ) + ( F ` ( ( p ^ k ) x. b ) ) ) ) | 
						
							| 235 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 236 | 1 235 | ressmulr |  |-  ( QQ e. _V -> x. = ( .r ` Q ) ) | 
						
							| 237 | 229 236 | ax-mp |  |-  x. = ( .r ` Q ) | 
						
							| 238 | 2 18 237 | abvmul |  |-  ( ( F e. A /\ ( P ^ k ) e. QQ /\ a e. QQ ) -> ( F ` ( ( P ^ k ) x. a ) ) = ( ( F ` ( P ^ k ) ) x. ( F ` a ) ) ) | 
						
							| 239 | 197 200 203 238 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( P ^ k ) x. a ) ) = ( ( F ` ( P ^ k ) ) x. ( F ` a ) ) ) | 
						
							| 240 | 17 | ad3antrrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> P e. QQ ) | 
						
							| 241 | 172 | ad2antrl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> k e. NN0 ) | 
						
							| 242 | 1 2 | qabvexp |  |-  ( ( F e. A /\ P e. QQ /\ k e. NN0 ) -> ( F ` ( P ^ k ) ) = ( ( F ` P ) ^ k ) ) | 
						
							| 243 | 197 240 241 242 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( P ^ k ) ) = ( ( F ` P ) ^ k ) ) | 
						
							| 244 | 243 | oveq1d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` ( P ^ k ) ) x. ( F ` a ) ) = ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) ) | 
						
							| 245 | 239 244 | eqtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( P ^ k ) x. a ) ) = ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) ) | 
						
							| 246 | 197 240 19 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` P ) e. RR ) | 
						
							| 247 | 246 241 | reexpcld |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` P ) ^ k ) e. RR ) | 
						
							| 248 | 2 18 | abvcl |  |-  ( ( F e. A /\ a e. QQ ) -> ( F ` a ) e. RR ) | 
						
							| 249 | 197 203 248 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` a ) e. RR ) | 
						
							| 250 | 247 249 | remulcld |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) e. RR ) | 
						
							| 251 |  | elz |  |-  ( a e. ZZ <-> ( a e. RR /\ ( a = 0 \/ a e. NN \/ -u a e. NN ) ) ) | 
						
							| 252 | 251 | simprbi |  |-  ( a e. ZZ -> ( a = 0 \/ a e. NN \/ -u a e. NN ) ) | 
						
							| 253 | 252 | adantl |  |-  ( ( ph /\ a e. ZZ ) -> ( a = 0 \/ a e. NN \/ -u a e. NN ) ) | 
						
							| 254 | 2 22 | abv0 |  |-  ( F e. A -> ( F ` 0 ) = 0 ) | 
						
							| 255 | 5 254 | syl |  |-  ( ph -> ( F ` 0 ) = 0 ) | 
						
							| 256 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 257 | 255 256 | eqbrtrdi |  |-  ( ph -> ( F ` 0 ) <_ 1 ) | 
						
							| 258 | 257 | adantr |  |-  ( ( ph /\ a e. ZZ ) -> ( F ` 0 ) <_ 1 ) | 
						
							| 259 |  | fveq2 |  |-  ( a = 0 -> ( F ` a ) = ( F ` 0 ) ) | 
						
							| 260 | 259 | breq1d |  |-  ( a = 0 -> ( ( F ` a ) <_ 1 <-> ( F ` 0 ) <_ 1 ) ) | 
						
							| 261 | 258 260 | syl5ibrcom |  |-  ( ( ph /\ a e. ZZ ) -> ( a = 0 -> ( F ` a ) <_ 1 ) ) | 
						
							| 262 |  | nnq |  |-  ( n e. NN -> n e. QQ ) | 
						
							| 263 | 2 18 | abvcl |  |-  ( ( F e. A /\ n e. QQ ) -> ( F ` n ) e. RR ) | 
						
							| 264 | 5 262 263 | syl2an |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. RR ) | 
						
							| 265 |  | 1re |  |-  1 e. RR | 
						
							| 266 |  | lenlt |  |-  ( ( ( F ` n ) e. RR /\ 1 e. RR ) -> ( ( F ` n ) <_ 1 <-> -. 1 < ( F ` n ) ) ) | 
						
							| 267 | 264 265 266 | sylancl |  |-  ( ( ph /\ n e. NN ) -> ( ( F ` n ) <_ 1 <-> -. 1 < ( F ` n ) ) ) | 
						
							| 268 | 267 | ralbidva |  |-  ( ph -> ( A. n e. NN ( F ` n ) <_ 1 <-> A. n e. NN -. 1 < ( F ` n ) ) ) | 
						
							| 269 | 6 268 | mpbird |  |-  ( ph -> A. n e. NN ( F ` n ) <_ 1 ) | 
						
							| 270 |  | fveq2 |  |-  ( n = a -> ( F ` n ) = ( F ` a ) ) | 
						
							| 271 | 270 | breq1d |  |-  ( n = a -> ( ( F ` n ) <_ 1 <-> ( F ` a ) <_ 1 ) ) | 
						
							| 272 | 271 | rspccv |  |-  ( A. n e. NN ( F ` n ) <_ 1 -> ( a e. NN -> ( F ` a ) <_ 1 ) ) | 
						
							| 273 | 269 272 | syl |  |-  ( ph -> ( a e. NN -> ( F ` a ) <_ 1 ) ) | 
						
							| 274 | 273 | adantr |  |-  ( ( ph /\ a e. ZZ ) -> ( a e. NN -> ( F ` a ) <_ 1 ) ) | 
						
							| 275 | 5 | adantr |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> F e. A ) | 
						
							| 276 | 202 | ad2antrl |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> a e. QQ ) | 
						
							| 277 |  | eqid |  |-  ( invg ` Q ) = ( invg ` Q ) | 
						
							| 278 | 2 18 277 | abvneg |  |-  ( ( F e. A /\ a e. QQ ) -> ( F ` ( ( invg ` Q ) ` a ) ) = ( F ` a ) ) | 
						
							| 279 | 275 276 278 | syl2anc |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> ( F ` ( ( invg ` Q ) ` a ) ) = ( F ` a ) ) | 
						
							| 280 |  | fveq2 |  |-  ( n = ( ( invg ` Q ) ` a ) -> ( F ` n ) = ( F ` ( ( invg ` Q ) ` a ) ) ) | 
						
							| 281 | 280 | breq1d |  |-  ( n = ( ( invg ` Q ) ` a ) -> ( ( F ` n ) <_ 1 <-> ( F ` ( ( invg ` Q ) ` a ) ) <_ 1 ) ) | 
						
							| 282 | 269 | adantr |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> A. n e. NN ( F ` n ) <_ 1 ) | 
						
							| 283 | 1 | qrngneg |  |-  ( a e. QQ -> ( ( invg ` Q ) ` a ) = -u a ) | 
						
							| 284 | 276 283 | syl |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> ( ( invg ` Q ) ` a ) = -u a ) | 
						
							| 285 |  | simprr |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> -u a e. NN ) | 
						
							| 286 | 284 285 | eqeltrd |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> ( ( invg ` Q ) ` a ) e. NN ) | 
						
							| 287 | 281 282 286 | rspcdva |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> ( F ` ( ( invg ` Q ) ` a ) ) <_ 1 ) | 
						
							| 288 | 279 287 | eqbrtrrd |  |-  ( ( ph /\ ( a e. ZZ /\ -u a e. NN ) ) -> ( F ` a ) <_ 1 ) | 
						
							| 289 | 288 | expr |  |-  ( ( ph /\ a e. ZZ ) -> ( -u a e. NN -> ( F ` a ) <_ 1 ) ) | 
						
							| 290 | 261 274 289 | 3jaod |  |-  ( ( ph /\ a e. ZZ ) -> ( ( a = 0 \/ a e. NN \/ -u a e. NN ) -> ( F ` a ) <_ 1 ) ) | 
						
							| 291 | 253 290 | mpd |  |-  ( ( ph /\ a e. ZZ ) -> ( F ` a ) <_ 1 ) | 
						
							| 292 | 291 | ralrimiva |  |-  ( ph -> A. a e. ZZ ( F ` a ) <_ 1 ) | 
						
							| 293 | 292 | ad3antrrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> A. a e. ZZ ( F ` a ) <_ 1 ) | 
						
							| 294 |  | rsp |  |-  ( A. a e. ZZ ( F ` a ) <_ 1 -> ( a e. ZZ -> ( F ` a ) <_ 1 ) ) | 
						
							| 295 | 293 201 294 | sylc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` a ) <_ 1 ) | 
						
							| 296 | 265 | a1i |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 1 e. RR ) | 
						
							| 297 | 163 | ad2antrl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> k e. ZZ ) | 
						
							| 298 | 24 | ad3antrrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 < ( F ` P ) ) | 
						
							| 299 |  | expgt0 |  |-  ( ( ( F ` P ) e. RR /\ k e. ZZ /\ 0 < ( F ` P ) ) -> 0 < ( ( F ` P ) ^ k ) ) | 
						
							| 300 | 246 297 298 299 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 < ( ( F ` P ) ^ k ) ) | 
						
							| 301 |  | lemul2 |  |-  ( ( ( F ` a ) e. RR /\ 1 e. RR /\ ( ( ( F ` P ) ^ k ) e. RR /\ 0 < ( ( F ` P ) ^ k ) ) ) -> ( ( F ` a ) <_ 1 <-> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) <_ ( ( ( F ` P ) ^ k ) x. 1 ) ) ) | 
						
							| 302 | 249 296 247 300 301 | syl112anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` a ) <_ 1 <-> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) <_ ( ( ( F ` P ) ^ k ) x. 1 ) ) ) | 
						
							| 303 | 295 302 | mpbid |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) <_ ( ( ( F ` P ) ^ k ) x. 1 ) ) | 
						
							| 304 | 247 | recnd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` P ) ^ k ) e. CC ) | 
						
							| 305 | 304 | mulridd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` P ) ^ k ) x. 1 ) = ( ( F ` P ) ^ k ) ) | 
						
							| 306 | 303 305 | breqtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) <_ ( ( F ` P ) ^ k ) ) | 
						
							| 307 | 146 | rpred |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> S e. RR ) | 
						
							| 308 | 307 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> S e. RR ) | 
						
							| 309 | 144 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` P ) e. RR+ ) | 
						
							| 310 | 309 | rpge0d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 <_ ( F ` P ) ) | 
						
							| 311 | 176 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> p e. NN ) | 
						
							| 312 | 311 104 | syl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> p e. QQ ) | 
						
							| 313 | 197 312 138 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` p ) e. RR ) | 
						
							| 314 |  | max1 |  |-  ( ( ( F ` P ) e. RR /\ ( F ` p ) e. RR ) -> ( F ` P ) <_ if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) ) | 
						
							| 315 | 246 313 314 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` P ) <_ if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) ) | 
						
							| 316 | 315 10 | breqtrrdi |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` P ) <_ S ) | 
						
							| 317 |  | leexp1a |  |-  ( ( ( ( F ` P ) e. RR /\ S e. RR /\ k e. NN0 ) /\ ( 0 <_ ( F ` P ) /\ ( F ` P ) <_ S ) ) -> ( ( F ` P ) ^ k ) <_ ( S ^ k ) ) | 
						
							| 318 | 246 308 241 310 316 317 | syl32anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` P ) ^ k ) <_ ( S ^ k ) ) | 
						
							| 319 | 250 247 226 306 318 | letrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` P ) ^ k ) x. ( F ` a ) ) <_ ( S ^ k ) ) | 
						
							| 320 | 245 319 | eqbrtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( P ^ k ) x. a ) ) <_ ( S ^ k ) ) | 
						
							| 321 | 2 18 237 | abvmul |  |-  ( ( F e. A /\ ( p ^ k ) e. QQ /\ b e. QQ ) -> ( F ` ( ( p ^ k ) x. b ) ) = ( ( F ` ( p ^ k ) ) x. ( F ` b ) ) ) | 
						
							| 322 | 197 208 211 321 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( p ^ k ) x. b ) ) = ( ( F ` ( p ^ k ) ) x. ( F ` b ) ) ) | 
						
							| 323 | 1 2 | qabvexp |  |-  ( ( F e. A /\ p e. QQ /\ k e. NN0 ) -> ( F ` ( p ^ k ) ) = ( ( F ` p ) ^ k ) ) | 
						
							| 324 | 197 312 241 323 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( p ^ k ) ) = ( ( F ` p ) ^ k ) ) | 
						
							| 325 | 324 | oveq1d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` ( p ^ k ) ) x. ( F ` b ) ) = ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) ) | 
						
							| 326 | 322 325 | eqtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( p ^ k ) x. b ) ) = ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) ) | 
						
							| 327 | 313 241 | reexpcld |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` p ) ^ k ) e. RR ) | 
						
							| 328 | 2 18 | abvcl |  |-  ( ( F e. A /\ b e. QQ ) -> ( F ` b ) e. RR ) | 
						
							| 329 | 197 211 328 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` b ) e. RR ) | 
						
							| 330 | 327 329 | remulcld |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) e. RR ) | 
						
							| 331 |  | fveq2 |  |-  ( a = b -> ( F ` a ) = ( F ` b ) ) | 
						
							| 332 | 331 | breq1d |  |-  ( a = b -> ( ( F ` a ) <_ 1 <-> ( F ` b ) <_ 1 ) ) | 
						
							| 333 | 332 293 209 | rspcdva |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` b ) <_ 1 ) | 
						
							| 334 | 311 | nnne0d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> p =/= 0 ) | 
						
							| 335 | 197 312 334 140 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 < ( F ` p ) ) | 
						
							| 336 |  | expgt0 |  |-  ( ( ( F ` p ) e. RR /\ k e. ZZ /\ 0 < ( F ` p ) ) -> 0 < ( ( F ` p ) ^ k ) ) | 
						
							| 337 | 313 297 335 336 | syl3anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 < ( ( F ` p ) ^ k ) ) | 
						
							| 338 |  | lemul2 |  |-  ( ( ( F ` b ) e. RR /\ 1 e. RR /\ ( ( ( F ` p ) ^ k ) e. RR /\ 0 < ( ( F ` p ) ^ k ) ) ) -> ( ( F ` b ) <_ 1 <-> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) <_ ( ( ( F ` p ) ^ k ) x. 1 ) ) ) | 
						
							| 339 | 329 296 327 337 338 | syl112anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` b ) <_ 1 <-> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) <_ ( ( ( F ` p ) ^ k ) x. 1 ) ) ) | 
						
							| 340 | 333 339 | mpbid |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) <_ ( ( ( F ` p ) ^ k ) x. 1 ) ) | 
						
							| 341 | 327 | recnd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` p ) ^ k ) e. CC ) | 
						
							| 342 | 341 | mulridd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` p ) ^ k ) x. 1 ) = ( ( F ` p ) ^ k ) ) | 
						
							| 343 | 340 342 | breqtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) <_ ( ( F ` p ) ^ k ) ) | 
						
							| 344 | 143 | adantr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` p ) e. RR+ ) | 
						
							| 345 | 344 | rpge0d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> 0 <_ ( F ` p ) ) | 
						
							| 346 |  | max2 |  |-  ( ( ( F ` P ) e. RR /\ ( F ` p ) e. RR ) -> ( F ` p ) <_ if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) ) | 
						
							| 347 | 246 313 346 | syl2anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` p ) <_ if ( ( F ` P ) <_ ( F ` p ) , ( F ` p ) , ( F ` P ) ) ) | 
						
							| 348 | 347 10 | breqtrrdi |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` p ) <_ S ) | 
						
							| 349 |  | leexp1a |  |-  ( ( ( ( F ` p ) e. RR /\ S e. RR /\ k e. NN0 ) /\ ( 0 <_ ( F ` p ) /\ ( F ` p ) <_ S ) ) -> ( ( F ` p ) ^ k ) <_ ( S ^ k ) ) | 
						
							| 350 | 313 308 241 345 348 349 | syl32anc |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` p ) ^ k ) <_ ( S ^ k ) ) | 
						
							| 351 | 330 327 226 343 350 | letrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( F ` p ) ^ k ) x. ( F ` b ) ) <_ ( S ^ k ) ) | 
						
							| 352 | 326 351 | eqbrtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( p ^ k ) x. b ) ) <_ ( S ^ k ) ) | 
						
							| 353 | 219 221 226 226 320 352 | le2addd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` ( ( P ^ k ) x. a ) ) + ( F ` ( ( p ^ k ) x. b ) ) ) <_ ( ( S ^ k ) + ( S ^ k ) ) ) | 
						
							| 354 | 224 | rpcnd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( S ^ k ) e. CC ) | 
						
							| 355 | 354 | 2timesd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( 2 x. ( S ^ k ) ) = ( ( S ^ k ) + ( S ^ k ) ) ) | 
						
							| 356 | 355 | adantrr |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( 2 x. ( S ^ k ) ) = ( ( S ^ k ) + ( S ^ k ) ) ) | 
						
							| 357 | 353 356 | breqtrrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( F ` ( ( P ^ k ) x. a ) ) + ( F ` ( ( p ^ k ) x. b ) ) ) <_ ( 2 x. ( S ^ k ) ) ) | 
						
							| 358 | 217 222 228 234 357 | letrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) <_ ( 2 x. ( S ^ k ) ) ) | 
						
							| 359 |  | fveq2 |  |-  ( 1 = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( F ` 1 ) = ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) ) | 
						
							| 360 | 359 | breq1d |  |-  ( 1 = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) <-> ( F ` ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) ) <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 361 | 358 360 | syl5ibrcom |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( 1 = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 362 | 196 361 | sylbid |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ ( k e. NN /\ ( a e. ZZ /\ b e. ZZ ) ) ) -> ( ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 363 | 362 | anassrs |  |-  ( ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 364 | 363 | rexlimdvva |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( E. a e. ZZ E. b e. ZZ ( ( P ^ k ) gcd ( p ^ k ) ) = ( ( ( P ^ k ) x. a ) + ( ( p ^ k ) x. b ) ) -> ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 365 | 181 364 | mpd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( F ` 1 ) <_ ( 2 x. ( S ^ k ) ) ) | 
						
							| 366 | 170 365 | eqbrtrrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> 1 <_ ( 2 x. ( S ^ k ) ) ) | 
						
							| 367 | 224 | rpregt0d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( S ^ k ) e. RR /\ 0 < ( S ^ k ) ) ) | 
						
							| 368 |  | ledivmul2 |  |-  ( ( 1 e. RR /\ 2 e. RR /\ ( ( S ^ k ) e. RR /\ 0 < ( S ^ k ) ) ) -> ( ( 1 / ( S ^ k ) ) <_ 2 <-> 1 <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 369 | 265 135 367 368 | mp3an12i |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( 1 / ( S ^ k ) ) <_ 2 <-> 1 <_ ( 2 x. ( S ^ k ) ) ) ) | 
						
							| 370 | 366 369 | mpbird |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( 1 / ( S ^ k ) ) <_ 2 ) | 
						
							| 371 | 165 370 | eqbrtrd |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( 1 / S ) ^ k ) <_ 2 ) | 
						
							| 372 |  | reexpcl |  |-  ( ( ( 1 / S ) e. RR /\ k e. NN0 ) -> ( ( 1 / S ) ^ k ) e. RR ) | 
						
							| 373 | 147 172 372 | syl2an |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( 1 / S ) ^ k ) e. RR ) | 
						
							| 374 |  | lenlt |  |-  ( ( ( ( 1 / S ) ^ k ) e. RR /\ 2 e. RR ) -> ( ( ( 1 / S ) ^ k ) <_ 2 <-> -. 2 < ( ( 1 / S ) ^ k ) ) ) | 
						
							| 375 | 373 135 374 | sylancl |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( ( ( 1 / S ) ^ k ) <_ 2 <-> -. 2 < ( ( 1 / S ) ^ k ) ) ) | 
						
							| 376 | 371 375 | mpbid |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> -. 2 < ( ( 1 / S ) ^ k ) ) | 
						
							| 377 | 376 | pm2.21d |  |-  ( ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) /\ k e. NN ) -> ( 2 < ( ( 1 / S ) ^ k ) -> -. ( F ` p ) < 1 ) ) | 
						
							| 378 | 377 | rexlimdva |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> ( E. k e. NN 2 < ( ( 1 / S ) ^ k ) -> -. ( F ` p ) < 1 ) ) | 
						
							| 379 | 158 378 | mpd |  |-  ( ( ( ph /\ p e. Prime ) /\ ( P =/= p /\ ( F ` p ) < 1 ) ) -> -. ( F ` p ) < 1 ) | 
						
							| 380 | 379 | expr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( F ` p ) < 1 -> -. ( F ` p ) < 1 ) ) | 
						
							| 381 | 380 | pm2.01d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> -. ( F ` p ) < 1 ) | 
						
							| 382 |  | fveq2 |  |-  ( n = p -> ( F ` n ) = ( F ` p ) ) | 
						
							| 383 | 382 | breq2d |  |-  ( n = p -> ( 1 < ( F ` n ) <-> 1 < ( F ` p ) ) ) | 
						
							| 384 | 383 | notbid |  |-  ( n = p -> ( -. 1 < ( F ` n ) <-> -. 1 < ( F ` p ) ) ) | 
						
							| 385 | 6 | ad2antrr |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> A. n e. NN -. 1 < ( F ` n ) ) | 
						
							| 386 | 384 385 103 | rspcdva |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> -. 1 < ( F ` p ) ) | 
						
							| 387 |  | lttri3 |  |-  ( ( ( F ` p ) e. RR /\ 1 e. RR ) -> ( ( F ` p ) = 1 <-> ( -. ( F ` p ) < 1 /\ -. 1 < ( F ` p ) ) ) ) | 
						
							| 388 | 139 265 387 | sylancl |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( F ` p ) = 1 <-> ( -. ( F ` p ) < 1 /\ -. 1 < ( F ` p ) ) ) ) | 
						
							| 389 | 381 386 388 | mpbir2and |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( F ` p ) = 1 ) | 
						
							| 390 | 112 134 389 | 3eqtr4d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( ( ( J ` P ) ` p ) ^c R ) = ( F ` p ) ) | 
						
							| 391 | 110 390 | eqtr2d |  |-  ( ( ( ph /\ p e. Prime ) /\ P =/= p ) -> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) | 
						
							| 392 | 391 | ex |  |-  ( ( ph /\ p e. Prime ) -> ( P =/= p -> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) ) | 
						
							| 393 | 101 392 | pm2.61dne |  |-  ( ( ph /\ p e. Prime ) -> ( F ` p ) = ( ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ` p ) ) | 
						
							| 394 | 1 2 5 50 393 | ostthlem2 |  |-  ( ph -> F = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ) | 
						
							| 395 |  | oveq2 |  |-  ( a = R -> ( ( ( J ` P ) ` y ) ^c a ) = ( ( ( J ` P ) ` y ) ^c R ) ) | 
						
							| 396 | 395 | mpteq2dv |  |-  ( a = R -> ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c a ) ) = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ) | 
						
							| 397 | 396 | rspceeqv |  |-  ( ( R e. RR+ /\ F = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) ) -> E. a e. RR+ F = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c a ) ) ) | 
						
							| 398 | 48 394 397 | syl2anc |  |-  ( ph -> E. a e. RR+ F = ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c a ) ) ) |