| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|- Q = ( CCfld |`s QQ ) |
| 2 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 3 |
2
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 4 |
|
subrgsubg |
|- ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) |
| 5 |
3 4
|
ax-mp |
|- QQ e. ( SubGrp ` CCfld ) |
| 6 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
| 7 |
|
eqid |
|- ( invg ` Q ) = ( invg ` Q ) |
| 8 |
1 6 7
|
subginv |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ X e. QQ ) -> ( ( invg ` CCfld ) ` X ) = ( ( invg ` Q ) ` X ) ) |
| 9 |
5 8
|
mpan |
|- ( X e. QQ -> ( ( invg ` CCfld ) ` X ) = ( ( invg ` Q ) ` X ) ) |
| 10 |
|
qcn |
|- ( X e. QQ -> X e. CC ) |
| 11 |
|
cnfldneg |
|- ( X e. CC -> ( ( invg ` CCfld ) ` X ) = -u X ) |
| 12 |
10 11
|
syl |
|- ( X e. QQ -> ( ( invg ` CCfld ) ` X ) = -u X ) |
| 13 |
9 12
|
eqtr3d |
|- ( X e. QQ -> ( ( invg ` Q ) ` X ) = -u X ) |