| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q |  |-  Q = ( CCfld |`s QQ ) | 
						
							| 2 |  | qabsabv.a |  |-  A = ( AbsVal ` Q ) | 
						
							| 3 |  | padic.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 4 | 3 | padicval |  |-  ( ( P e. Prime /\ y e. QQ ) -> ( ( J ` P ) ` y ) = if ( y = 0 , 0 , ( P ^ -u ( P pCnt y ) ) ) ) | 
						
							| 5 | 4 | adantlr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> ( ( J ` P ) ` y ) = if ( y = 0 , 0 , ( P ^ -u ( P pCnt y ) ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> ( ( ( J ` P ) ` y ) ^c R ) = ( if ( y = 0 , 0 , ( P ^ -u ( P pCnt y ) ) ) ^c R ) ) | 
						
							| 7 |  | ovif |  |-  ( if ( y = 0 , 0 , ( P ^ -u ( P pCnt y ) ) ) ^c R ) = if ( y = 0 , ( 0 ^c R ) , ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) | 
						
							| 8 |  | rpre |  |-  ( R e. RR+ -> R e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( P e. Prime /\ R e. RR+ ) -> R e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> R e. CC ) | 
						
							| 11 |  | rpne0 |  |-  ( R e. RR+ -> R =/= 0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( P e. Prime /\ R e. RR+ ) -> R =/= 0 ) | 
						
							| 13 | 10 12 | 0cxpd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( 0 ^c R ) = 0 ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> ( 0 ^c R ) = 0 ) | 
						
							| 15 | 14 | ifeq1d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> if ( y = 0 , ( 0 ^c R ) , ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) = if ( y = 0 , 0 , ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) ) | 
						
							| 16 | 7 15 | eqtrid |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> ( if ( y = 0 , 0 , ( P ^ -u ( P pCnt y ) ) ) ^c R ) = if ( y = 0 , 0 , ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) ) | 
						
							| 17 |  | df-ne |  |-  ( y =/= 0 <-> -. y = 0 ) | 
						
							| 18 |  | pcqcl |  |-  ( ( P e. Prime /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) | 
						
							| 20 | 19 | zcnd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P pCnt y ) e. CC ) | 
						
							| 21 | 10 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> R e. CC ) | 
						
							| 22 |  | mulneg12 |  |-  ( ( ( P pCnt y ) e. CC /\ R e. CC ) -> ( -u ( P pCnt y ) x. R ) = ( ( P pCnt y ) x. -u R ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( -u ( P pCnt y ) x. R ) = ( ( P pCnt y ) x. -u R ) ) | 
						
							| 24 | 21 | negcld |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> -u R e. CC ) | 
						
							| 25 | 20 24 | mulcomd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( ( P pCnt y ) x. -u R ) = ( -u R x. ( P pCnt y ) ) ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( -u ( P pCnt y ) x. R ) = ( -u R x. ( P pCnt y ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c ( -u ( P pCnt y ) x. R ) ) = ( P ^c ( -u R x. ( P pCnt y ) ) ) ) | 
						
							| 28 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 30 |  | eluz2b2 |  |-  ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P e. NN /\ 1 < P ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P e. NN ) | 
						
							| 33 | 32 | nnrpd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P e. RR+ ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> P e. RR+ ) | 
						
							| 35 | 19 | znegcld |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> -u ( P pCnt y ) e. ZZ ) | 
						
							| 36 | 35 | zred |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> -u ( P pCnt y ) e. RR ) | 
						
							| 37 | 34 36 21 | cxpmuld |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c ( -u ( P pCnt y ) x. R ) ) = ( ( P ^c -u ( P pCnt y ) ) ^c R ) ) | 
						
							| 38 | 9 | renegcld |  |-  ( ( P e. Prime /\ R e. RR+ ) -> -u R e. RR ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> -u R e. RR ) | 
						
							| 40 | 34 39 20 | cxpmuld |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c ( -u R x. ( P pCnt y ) ) ) = ( ( P ^c -u R ) ^c ( P pCnt y ) ) ) | 
						
							| 41 | 27 37 40 | 3eqtr3d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( ( P ^c -u ( P pCnt y ) ) ^c R ) = ( ( P ^c -u R ) ^c ( P pCnt y ) ) ) | 
						
							| 42 | 32 | nnred |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P e. RR ) | 
						
							| 43 | 42 | recnd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P e. CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> P e. CC ) | 
						
							| 45 | 32 | nnne0d |  |-  ( ( P e. Prime /\ R e. RR+ ) -> P =/= 0 ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> P =/= 0 ) | 
						
							| 47 | 44 46 35 | cxpexpzd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c -u ( P pCnt y ) ) = ( P ^ -u ( P pCnt y ) ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( ( P ^c -u ( P pCnt y ) ) ^c R ) = ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) | 
						
							| 49 | 33 38 | rpcxpcld |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c -u R ) e. RR+ ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c -u R ) e. RR+ ) | 
						
							| 51 | 50 | rpcnd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c -u R ) e. CC ) | 
						
							| 52 | 50 | rpne0d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( P ^c -u R ) =/= 0 ) | 
						
							| 53 | 51 52 19 | cxpexpzd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( ( P ^c -u R ) ^c ( P pCnt y ) ) = ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) | 
						
							| 54 | 41 48 53 | 3eqtr3d |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ ( y e. QQ /\ y =/= 0 ) ) -> ( ( P ^ -u ( P pCnt y ) ) ^c R ) = ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) | 
						
							| 55 | 54 | anassrs |  |-  ( ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) /\ y =/= 0 ) -> ( ( P ^ -u ( P pCnt y ) ) ^c R ) = ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) | 
						
							| 56 | 17 55 | sylan2br |  |-  ( ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) /\ -. y = 0 ) -> ( ( P ^ -u ( P pCnt y ) ) ^c R ) = ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) | 
						
							| 57 | 56 | ifeq2da |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> if ( y = 0 , 0 , ( ( P ^ -u ( P pCnt y ) ) ^c R ) ) = if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) | 
						
							| 58 | 6 16 57 | 3eqtrd |  |-  ( ( ( P e. Prime /\ R e. RR+ ) /\ y e. QQ ) -> ( ( ( J ` P ) ` y ) ^c R ) = if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) | 
						
							| 59 | 58 | mpteq2dva |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) = ( y e. QQ |-> if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) ) | 
						
							| 60 |  | rpre |  |-  ( ( P ^c -u R ) e. RR+ -> ( P ^c -u R ) e. RR ) | 
						
							| 61 | 49 60 | syl |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c -u R ) e. RR ) | 
						
							| 62 |  | rpgt0 |  |-  ( ( P ^c -u R ) e. RR+ -> 0 < ( P ^c -u R ) ) | 
						
							| 63 | 49 62 | syl |  |-  ( ( P e. Prime /\ R e. RR+ ) -> 0 < ( P ^c -u R ) ) | 
						
							| 64 |  | rpgt0 |  |-  ( R e. RR+ -> 0 < R ) | 
						
							| 65 | 64 | adantl |  |-  ( ( P e. Prime /\ R e. RR+ ) -> 0 < R ) | 
						
							| 66 | 9 | lt0neg2d |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( 0 < R <-> -u R < 0 ) ) | 
						
							| 67 | 65 66 | mpbid |  |-  ( ( P e. Prime /\ R e. RR+ ) -> -u R < 0 ) | 
						
							| 68 | 31 | simprd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> 1 < P ) | 
						
							| 69 |  | 0red |  |-  ( ( P e. Prime /\ R e. RR+ ) -> 0 e. RR ) | 
						
							| 70 | 42 68 38 69 | cxpltd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( -u R < 0 <-> ( P ^c -u R ) < ( P ^c 0 ) ) ) | 
						
							| 71 | 67 70 | mpbid |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c -u R ) < ( P ^c 0 ) ) | 
						
							| 72 | 43 | cxp0d |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c 0 ) = 1 ) | 
						
							| 73 | 71 72 | breqtrd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c -u R ) < 1 ) | 
						
							| 74 |  | 0xr |  |-  0 e. RR* | 
						
							| 75 |  | 1xr |  |-  1 e. RR* | 
						
							| 76 |  | elioo2 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( P ^c -u R ) e. ( 0 (,) 1 ) <-> ( ( P ^c -u R ) e. RR /\ 0 < ( P ^c -u R ) /\ ( P ^c -u R ) < 1 ) ) ) | 
						
							| 77 | 74 75 76 | mp2an |  |-  ( ( P ^c -u R ) e. ( 0 (,) 1 ) <-> ( ( P ^c -u R ) e. RR /\ 0 < ( P ^c -u R ) /\ ( P ^c -u R ) < 1 ) ) | 
						
							| 78 | 61 63 73 77 | syl3anbrc |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( P ^c -u R ) e. ( 0 (,) 1 ) ) | 
						
							| 79 |  | eqid |  |-  ( y e. QQ |-> if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) = ( y e. QQ |-> if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) | 
						
							| 80 | 1 2 79 | padicabv |  |-  ( ( P e. Prime /\ ( P ^c -u R ) e. ( 0 (,) 1 ) ) -> ( y e. QQ |-> if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) e. A ) | 
						
							| 81 | 78 80 | syldan |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( y e. QQ |-> if ( y = 0 , 0 , ( ( P ^c -u R ) ^ ( P pCnt y ) ) ) ) e. A ) | 
						
							| 82 | 59 81 | eqeltrd |  |-  ( ( P e. Prime /\ R e. RR+ ) -> ( y e. QQ |-> ( ( ( J ` P ) ` y ) ^c R ) ) e. A ) |