| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qrng.q | ⊢ 𝑄  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 2 |  | qabsabv.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑄 ) | 
						
							| 3 |  | padic.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 4 | 3 | padicval | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℚ )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 )  =  if ( 𝑦  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 5 | 4 | adantlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 )  =  if ( 𝑦  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 )  =  ( if ( 𝑦  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) ↑𝑐 𝑅 ) ) | 
						
							| 7 |  | ovif | ⊢ ( if ( 𝑦  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) ↑𝑐 𝑅 )  =  if ( 𝑦  =  0 ,  ( 0 ↑𝑐 𝑅 ) ,  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) ) | 
						
							| 8 |  | rpre | ⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ∈  ℝ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ∈  ℂ ) | 
						
							| 11 |  | rpne0 | ⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ≠  0 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ≠  0 ) | 
						
							| 13 | 10 12 | 0cxpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 0 ↑𝑐 𝑅 )  =  0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  ( 0 ↑𝑐 𝑅 )  =  0 ) | 
						
							| 15 | 14 | ifeq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  if ( 𝑦  =  0 ,  ( 0 ↑𝑐 𝑅 ) ,  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) )  =  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) ) ) | 
						
							| 16 | 7 15 | eqtrid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  ( if ( 𝑦  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) ↑𝑐 𝑅 )  =  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) ) ) | 
						
							| 17 |  | df-ne | ⊢ ( 𝑦  ≠  0  ↔  ¬  𝑦  =  0 ) | 
						
							| 18 |  | pcqcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃  pCnt  𝑦 )  ∈  ℤ ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃  pCnt  𝑦 )  ∈  ℤ ) | 
						
							| 20 | 19 | zcnd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃  pCnt  𝑦 )  ∈  ℂ ) | 
						
							| 21 | 10 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  𝑅  ∈  ℂ ) | 
						
							| 22 |  | mulneg12 | ⊢ ( ( ( 𝑃  pCnt  𝑦 )  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( - ( 𝑃  pCnt  𝑦 )  ·  𝑅 )  =  ( ( 𝑃  pCnt  𝑦 )  ·  - 𝑅 ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( - ( 𝑃  pCnt  𝑦 )  ·  𝑅 )  =  ( ( 𝑃  pCnt  𝑦 )  ·  - 𝑅 ) ) | 
						
							| 24 | 21 | negcld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  - 𝑅  ∈  ℂ ) | 
						
							| 25 | 20 24 | mulcomd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( ( 𝑃  pCnt  𝑦 )  ·  - 𝑅 )  =  ( - 𝑅  ·  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( - ( 𝑃  pCnt  𝑦 )  ·  𝑅 )  =  ( - 𝑅  ·  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 ( - ( 𝑃  pCnt  𝑦 )  ·  𝑅 ) )  =  ( 𝑃 ↑𝑐 ( - 𝑅  ·  ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 28 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 30 |  | eluz2b2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ∈  ℕ ) | 
						
							| 33 | 32 | nnrpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ∈  ℝ+ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  𝑃  ∈  ℝ+ ) | 
						
							| 35 | 19 | znegcld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  - ( 𝑃  pCnt  𝑦 )  ∈  ℤ ) | 
						
							| 36 | 35 | zred | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  - ( 𝑃  pCnt  𝑦 )  ∈  ℝ ) | 
						
							| 37 | 34 36 21 | cxpmuld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 ( - ( 𝑃  pCnt  𝑦 )  ·  𝑅 ) )  =  ( ( 𝑃 ↑𝑐 - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) ) | 
						
							| 38 | 9 | renegcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  - 𝑅  ∈  ℝ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  - 𝑅  ∈  ℝ ) | 
						
							| 40 | 34 39 20 | cxpmuld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 ( - 𝑅  ·  ( 𝑃  pCnt  𝑦 ) ) )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑𝑐 ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 41 | 27 37 40 | 3eqtr3d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( ( 𝑃 ↑𝑐 - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑𝑐 ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 42 | 32 | nnred | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ∈  ℝ ) | 
						
							| 43 | 42 | recnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ∈  ℂ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  𝑃  ∈  ℂ ) | 
						
							| 45 | 32 | nnne0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  𝑃  ≠  0 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  𝑃  ≠  0 ) | 
						
							| 47 | 44 46 35 | cxpexpzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 - ( 𝑃  pCnt  𝑦 ) )  =  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( ( 𝑃 ↑𝑐 - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) ) | 
						
							| 49 | 33 38 | rpcxpcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ+ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ+ ) | 
						
							| 51 | 50 | rpcnd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℂ ) | 
						
							| 52 | 50 | rpne0d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ≠  0 ) | 
						
							| 53 | 51 52 19 | cxpexpzd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑𝑐 ( 𝑃  pCnt  𝑦 ) )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 54 | 41 48 53 | 3eqtr3d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  ( 𝑦  ∈  ℚ  ∧  𝑦  ≠  0 ) )  →  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 55 | 54 | anassrs | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  ∧  𝑦  ≠  0 )  →  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 56 | 17 55 | sylan2br | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  ∧  ¬  𝑦  =  0 )  →  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 )  =  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 57 | 56 | ifeq2da | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑ - ( 𝑃  pCnt  𝑦 ) ) ↑𝑐 𝑅 ) )  =  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 58 | 6 16 57 | 3eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℚ )  →  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 )  =  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 59 | 58 | mpteq2dva | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  =  ( 𝑦  ∈  ℚ  ↦  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) | 
						
							| 60 |  | rpre | ⊢ ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ+  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ ) | 
						
							| 61 | 49 60 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ ) | 
						
							| 62 |  | rpgt0 | ⊢ ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ+  →  0  <  ( 𝑃 ↑𝑐 - 𝑅 ) ) | 
						
							| 63 | 49 62 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  0  <  ( 𝑃 ↑𝑐 - 𝑅 ) ) | 
						
							| 64 |  | rpgt0 | ⊢ ( 𝑅  ∈  ℝ+  →  0  <  𝑅 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  0  <  𝑅 ) | 
						
							| 66 | 9 | lt0neg2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 0  <  𝑅  ↔  - 𝑅  <  0 ) ) | 
						
							| 67 | 65 66 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  - 𝑅  <  0 ) | 
						
							| 68 | 31 | simprd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  1  <  𝑃 ) | 
						
							| 69 |  | 0red | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  0  ∈  ℝ ) | 
						
							| 70 | 42 68 38 69 | cxpltd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( - 𝑅  <  0  ↔  ( 𝑃 ↑𝑐 - 𝑅 )  <  ( 𝑃 ↑𝑐 0 ) ) ) | 
						
							| 71 | 67 70 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 - 𝑅 )  <  ( 𝑃 ↑𝑐 0 ) ) | 
						
							| 72 | 43 | cxp0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 0 )  =  1 ) | 
						
							| 73 | 71 72 | breqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 - 𝑅 )  <  1 ) | 
						
							| 74 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 75 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 76 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ( 0 (,) 1 )  ↔  ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ  ∧  0  <  ( 𝑃 ↑𝑐 - 𝑅 )  ∧  ( 𝑃 ↑𝑐 - 𝑅 )  <  1 ) ) ) | 
						
							| 77 | 74 75 76 | mp2an | ⊢ ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ( 0 (,) 1 )  ↔  ( ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ℝ  ∧  0  <  ( 𝑃 ↑𝑐 - 𝑅 )  ∧  ( 𝑃 ↑𝑐 - 𝑅 )  <  1 ) ) | 
						
							| 78 | 61 63 73 77 | syl3anbrc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ( 0 (,) 1 ) ) | 
						
							| 79 |  | eqid | ⊢ ( 𝑦  ∈  ℚ  ↦  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  =  ( 𝑦  ∈  ℚ  ↦  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 80 | 1 2 79 | padicabv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃 ↑𝑐 - 𝑅 )  ∈  ( 0 (,) 1 ) )  →  ( 𝑦  ∈  ℚ  ↦  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  ∈  𝐴 ) | 
						
							| 81 | 78 80 | syldan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑦  ∈  ℚ  ↦  if ( 𝑦  =  0 ,  0 ,  ( ( 𝑃 ↑𝑐 - 𝑅 ) ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  ∈  𝐴 ) | 
						
							| 82 | 59 81 | eqeltrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑦  ∈  ℚ  ↦  ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) )  ∈  𝐴 ) |