| Step | Hyp | Ref | Expression | 
						
							| 1 |  | padicval.j | ⊢ 𝐽  =  ( 𝑞  ∈  ℙ  ↦  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑞 ↑ - ( 𝑞  pCnt  𝑥 ) ) ) ) ) | 
						
							| 2 | 1 | padicfval | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝐽 ‘ 𝑃 )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑋 )  =  ( ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) ‘ 𝑋 ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  0  ↔  𝑋  =  0 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑃  pCnt  𝑥 )  =  ( 𝑃  pCnt  𝑋 ) ) | 
						
							| 6 | 5 | negeqd | ⊢ ( 𝑥  =  𝑋  →  - ( 𝑃  pCnt  𝑥 )  =  - ( 𝑃  pCnt  𝑋 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) )  =  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) ) ) | 
						
							| 8 | 4 7 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) )  =  if ( 𝑋  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) )  =  ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) | 
						
							| 10 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 11 |  | ovex | ⊢ ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) )  ∈  V | 
						
							| 12 | 10 11 | ifex | ⊢ if ( 𝑋  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) ) )  ∈  V | 
						
							| 13 | 8 9 12 | fvmpt | ⊢ ( 𝑋  ∈  ℚ  →  ( ( 𝑥  ∈  ℚ  ↦  if ( 𝑥  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑥 ) ) ) ) ‘ 𝑋 )  =  if ( 𝑋  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) ) ) ) | 
						
							| 14 | 3 13 | sylan9eq | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑋  ∈  ℚ )  →  ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑋 )  =  if ( 𝑋  =  0 ,  0 ,  ( 𝑃 ↑ - ( 𝑃  pCnt  𝑋 ) ) ) ) |