| Step |
Hyp |
Ref |
Expression |
| 1 |
|
padicval.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
| 2 |
1
|
padicfval |
⊢ ( 𝑃 ∈ ℙ → ( 𝐽 ‘ 𝑃 ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
| 3 |
2
|
fveq1d |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ‘ 𝑋 ) ) |
| 4 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 pCnt 𝑥 ) = ( 𝑃 pCnt 𝑋 ) ) |
| 6 |
5
|
negeqd |
⊢ ( 𝑥 = 𝑋 → - ( 𝑃 pCnt 𝑥 ) = - ( 𝑃 pCnt 𝑋 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ) |
| 8 |
4 7
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) = if ( 𝑋 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) |
| 10 |
|
c0ex |
⊢ 0 ∈ V |
| 11 |
|
ovex |
⊢ ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ∈ V |
| 12 |
10 11
|
ifex |
⊢ if ( 𝑋 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ) ∈ V |
| 13 |
8 9 12
|
fvmpt |
⊢ ( 𝑋 ∈ ℚ → ( ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑥 ) ) ) ) ‘ 𝑋 ) = if ( 𝑋 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ) ) |
| 14 |
3 13
|
sylan9eq |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑋 ) = if ( 𝑋 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑋 ) ) ) ) |