Step |
Hyp |
Ref |
Expression |
1 |
|
ostth2lem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ostth2lem1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ostth2lem1.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ↑ 𝑛 ) ≤ ( 𝑛 · 𝐵 ) ) |
4 |
|
2re |
⊢ 2 ∈ ℝ |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐵 ∈ ℝ ) |
6 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐵 ) ∈ ℝ ) |
7 |
4 5 6
|
sylancr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 2 · 𝐵 ) ∈ ℝ ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
11 |
|
difrp |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 < 𝐴 ↔ ( 𝐴 − 1 ) ∈ ℝ+ ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 1 < 𝐴 ↔ ( 𝐴 − 1 ) ∈ ℝ+ ) ) |
13 |
8 12
|
mpbid |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 𝐴 − 1 ) ∈ ℝ+ ) |
14 |
7 13
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ∈ ℝ ) |
15 |
|
expnbnd |
⊢ ( ( ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ∃ 𝑘 ∈ ℕ ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) < ( 𝐴 ↑ 𝑘 ) ) |
16 |
14 10 8 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ∃ 𝑘 ∈ ℕ ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) < ( 𝐴 ↑ 𝑘 ) ) |
17 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
18 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
19 |
10 17 18
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
20 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ∈ ℝ ) |
21 |
13
|
rpred |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ( 𝐴 − 1 ) ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 − 1 ) ∈ ℝ ) |
23 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
25 |
22 24
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 − 1 ) · 𝑘 ) ∈ ℝ ) |
26 |
25 19
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℝ ) |
27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
28 |
|
2nn |
⊢ 2 ∈ ℕ |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
30 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
31 |
28 29 30
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
32 |
31
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
33 |
27 32
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 2 · 𝑘 ) ) ∈ ℝ ) |
34 |
31
|
nnred |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℝ ) |
35 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
36 |
34 35
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) · 𝐵 ) ∈ ℝ ) |
37 |
|
0red |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
38 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
39 |
|
0lt1 |
⊢ 0 < 1 |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 < 1 ) |
41 |
37 38 10 40 8
|
lttrd |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
42 |
10 41
|
elrpd |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
43 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
44 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) |
45 |
42 43 44
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ+ ) |
46 |
|
peano2re |
⊢ ( ( ( 𝐴 − 1 ) · 𝑘 ) ∈ ℝ → ( ( ( 𝐴 − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) |
47 |
25 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) + 1 ) ∈ ℝ ) |
48 |
25
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 − 1 ) · 𝑘 ) < ( ( ( 𝐴 − 1 ) · 𝑘 ) + 1 ) ) |
49 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
50 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ+ ) |
51 |
50
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ 𝐴 ) |
52 |
|
bernneq2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴 ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) + 1 ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
53 |
27 49 51 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) + 1 ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
54 |
25 47 19 48 53
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 − 1 ) · 𝑘 ) < ( 𝐴 ↑ 𝑘 ) ) |
55 |
25 19 45 54
|
ltmul1dd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) < ( ( 𝐴 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
56 |
24
|
recnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
57 |
56
|
2timesd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 2 · 𝑘 ) ) = ( 𝐴 ↑ ( 𝑘 + 𝑘 ) ) ) |
59 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
60 |
59 49 49
|
expaddd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑘 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
61 |
58 60
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 2 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
62 |
55 61
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 𝐴 ↑ ( 2 · 𝑘 ) ) ) |
63 |
|
oveq2 |
⊢ ( 𝑛 = ( 2 · 𝑘 ) → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ ( 2 · 𝑘 ) ) ) |
64 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 · 𝑘 ) → ( 𝑛 · 𝐵 ) = ( ( 2 · 𝑘 ) · 𝐵 ) ) |
65 |
63 64
|
breq12d |
⊢ ( 𝑛 = ( 2 · 𝑘 ) → ( ( 𝐴 ↑ 𝑛 ) ≤ ( 𝑛 · 𝐵 ) ↔ ( 𝐴 ↑ ( 2 · 𝑘 ) ) ≤ ( ( 2 · 𝑘 ) · 𝐵 ) ) ) |
66 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐴 ↑ 𝑛 ) ≤ ( 𝑛 · 𝐵 ) ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐴 ↑ 𝑛 ) ≤ ( 𝑛 · 𝐵 ) ) |
68 |
65 67 31
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ ( 2 · 𝑘 ) ) ≤ ( ( 2 · 𝑘 ) · 𝐵 ) ) |
69 |
26 33 36 62 68
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) < ( ( 2 · 𝑘 ) · 𝐵 ) ) |
70 |
22
|
recnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 − 1 ) ∈ ℂ ) |
71 |
19
|
recnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
72 |
70 71 56
|
mul32d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝑘 ) = ( ( ( 𝐴 − 1 ) · 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
73 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℂ ) |
74 |
35
|
recnd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
75 |
73 74 56
|
mul32d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝐵 ) · 𝑘 ) = ( ( 2 · 𝑘 ) · 𝐵 ) ) |
76 |
69 72 75
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝑘 ) < ( ( 2 · 𝐵 ) · 𝑘 ) ) |
77 |
22 19
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℝ ) |
78 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝐵 ) ∈ ℝ ) |
79 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
81 |
|
ltmul1 |
⊢ ( ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 2 · 𝐵 ) ∈ ℝ ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 2 · 𝐵 ) ↔ ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝑘 ) < ( ( 2 · 𝐵 ) · 𝑘 ) ) ) |
82 |
77 78 24 80 81
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 2 · 𝐵 ) ↔ ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝑘 ) < ( ( 2 · 𝐵 ) · 𝑘 ) ) ) |
83 |
76 82
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 2 · 𝐵 ) ) |
84 |
13
|
rpgt0d |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → 0 < ( 𝐴 − 1 ) ) |
85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 0 < ( 𝐴 − 1 ) ) |
86 |
|
ltmuldiv2 |
⊢ ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( 2 · 𝐵 ) ∈ ℝ ∧ ( ( 𝐴 − 1 ) ∈ ℝ ∧ 0 < ( 𝐴 − 1 ) ) ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 2 · 𝐵 ) ↔ ( 𝐴 ↑ 𝑘 ) < ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ) ) |
87 |
19 78 22 85 86
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 − 1 ) · ( 𝐴 ↑ 𝑘 ) ) < ( 2 · 𝐵 ) ↔ ( 𝐴 ↑ 𝑘 ) < ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ) ) |
88 |
83 87
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) < ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) ) |
89 |
19 20 88
|
ltnsymd |
⊢ ( ( ( 𝜑 ∧ 1 < 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ¬ ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) < ( 𝐴 ↑ 𝑘 ) ) |
90 |
89
|
nrexdv |
⊢ ( ( 𝜑 ∧ 1 < 𝐴 ) → ¬ ∃ 𝑘 ∈ ℕ ( ( 2 · 𝐵 ) / ( 𝐴 − 1 ) ) < ( 𝐴 ↑ 𝑘 ) ) |
91 |
16 90
|
pm2.65da |
⊢ ( 𝜑 → ¬ 1 < 𝐴 ) |
92 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ≤ 1 ↔ ¬ 1 < 𝐴 ) ) |
93 |
1 9 92
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ≤ 1 ↔ ¬ 1 < 𝐴 ) ) |
94 |
91 93
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ 1 ) |