| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ostth2lem1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ostth2lem1.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ostth2lem1.3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 ↑ 𝑛 )  ≤  ( 𝑛  ·  𝐵 ) ) | 
						
							| 4 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2  ·  𝐵 )  ∈  ℝ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ( 2  ·  𝐵 )  ∈  ℝ ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  1  <  𝐴 ) | 
						
							| 9 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 11 |  | difrp | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 1  <  𝐴  ↔  ( 𝐴  −  1 )  ∈  ℝ+ ) ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ( 1  <  𝐴  ↔  ( 𝐴  −  1 )  ∈  ℝ+ ) ) | 
						
							| 13 | 8 12 | mpbid | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ( 𝐴  −  1 )  ∈  ℝ+ ) | 
						
							| 14 | 7 13 | rerpdivcld | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  ∈  ℝ ) | 
						
							| 15 |  | expnbnd | ⊢ ( ( ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ∃ 𝑘  ∈  ℕ ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  <  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 16 | 14 10 8 15 | syl3anc | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ∃ 𝑘  ∈  ℕ ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  <  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 17 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 18 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 19 | 10 17 18 | syl2an | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 20 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  ∈  ℝ ) | 
						
							| 21 | 13 | rpred | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 23 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 25 | 22 24 | remulcld | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  −  1 )  ·  𝑘 )  ∈  ℝ ) | 
						
							| 26 | 25 19 | remulcld | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 27 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 28 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 30 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 31 | 28 29 30 | sylancr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 32 | 31 | nnnn0d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 33 | 27 32 | reexpcld | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ ( 2  ·  𝑘 ) )  ∈  ℝ ) | 
						
							| 34 | 31 | nnred | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 35 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 36 | 34 35 | remulcld | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  ·  𝐵 )  ∈  ℝ ) | 
						
							| 37 |  | 0red | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 38 | 9 | a1i | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 39 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  0  <  1 ) | 
						
							| 41 | 37 38 10 40 8 | lttrd | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 42 | 10 41 | elrpd | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 43 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 44 |  | rpexpcl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 45 | 42 43 44 | syl2an | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 46 |  | peano2re | ⊢ ( ( ( 𝐴  −  1 )  ·  𝑘 )  ∈  ℝ  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 47 | 25 46 | syl | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 48 | 25 | ltp1d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  −  1 )  ·  𝑘 )  <  ( ( ( 𝐴  −  1 )  ·  𝑘 )  +  1 ) ) | 
						
							| 49 | 17 | adantl | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 50 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 51 | 50 | rpge0d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  0  ≤  𝐴 ) | 
						
							| 52 |  | bernneq2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℕ0  ∧  0  ≤  𝐴 )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  +  1 )  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 53 | 27 49 51 52 | syl3anc | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  +  1 )  ≤  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 54 | 25 47 19 48 53 | ltletrd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  −  1 )  ·  𝑘 )  <  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 55 | 25 19 45 54 | ltmul1dd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( ( 𝐴 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 56 | 24 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 57 | 56 | 2timesd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  =  ( 𝑘  +  𝑘 ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ ( 2  ·  𝑘 ) )  =  ( 𝐴 ↑ ( 𝑘  +  𝑘 ) ) ) | 
						
							| 59 | 27 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 60 | 59 49 49 | expaddd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ ( 𝑘  +  𝑘 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ ( 2  ·  𝑘 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 62 | 55 61 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 𝐴 ↑ ( 2  ·  𝑘 ) ) ) | 
						
							| 63 |  | oveq2 | ⊢ ( 𝑛  =  ( 2  ·  𝑘 )  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ ( 2  ·  𝑘 ) ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( 𝑛  =  ( 2  ·  𝑘 )  →  ( 𝑛  ·  𝐵 )  =  ( ( 2  ·  𝑘 )  ·  𝐵 ) ) | 
						
							| 65 | 63 64 | breq12d | ⊢ ( 𝑛  =  ( 2  ·  𝑘 )  →  ( ( 𝐴 ↑ 𝑛 )  ≤  ( 𝑛  ·  𝐵 )  ↔  ( 𝐴 ↑ ( 2  ·  𝑘 ) )  ≤  ( ( 2  ·  𝑘 )  ·  𝐵 ) ) ) | 
						
							| 66 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐴 ↑ 𝑛 )  ≤  ( 𝑛  ·  𝐵 ) ) | 
						
							| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑛  ∈  ℕ ( 𝐴 ↑ 𝑛 )  ≤  ( 𝑛  ·  𝐵 ) ) | 
						
							| 68 | 65 67 31 | rspcdva | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ ( 2  ·  𝑘 ) )  ≤  ( ( 2  ·  𝑘 )  ·  𝐵 ) ) | 
						
							| 69 | 26 33 36 62 68 | ltletrd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( ( 2  ·  𝑘 )  ·  𝐵 ) ) | 
						
							| 70 | 22 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 71 | 19 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 72 | 70 71 56 | mul32d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ·  𝑘 )  =  ( ( ( 𝐴  −  1 )  ·  𝑘 )  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 73 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 74 | 35 | recnd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 75 | 73 74 56 | mul32d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝐵 )  ·  𝑘 )  =  ( ( 2  ·  𝑘 )  ·  𝐵 ) ) | 
						
							| 76 | 69 72 75 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ·  𝑘 )  <  ( ( 2  ·  𝐵 )  ·  𝑘 ) ) | 
						
							| 77 | 22 19 | remulcld | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℝ ) | 
						
							| 78 | 7 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝐵 )  ∈  ℝ ) | 
						
							| 79 |  | nngt0 | ⊢ ( 𝑘  ∈  ℕ  →  0  <  𝑘 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  0  <  𝑘 ) | 
						
							| 81 |  | ltmul1 | ⊢ ( ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ∈  ℝ  ∧  ( 2  ·  𝐵 )  ∈  ℝ  ∧  ( 𝑘  ∈  ℝ  ∧  0  <  𝑘 ) )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 2  ·  𝐵 )  ↔  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ·  𝑘 )  <  ( ( 2  ·  𝐵 )  ·  𝑘 ) ) ) | 
						
							| 82 | 77 78 24 80 81 | syl112anc | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 2  ·  𝐵 )  ↔  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  ·  𝑘 )  <  ( ( 2  ·  𝐵 )  ·  𝑘 ) ) ) | 
						
							| 83 | 76 82 | mpbird | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 2  ·  𝐵 ) ) | 
						
							| 84 | 13 | rpgt0d | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  0  <  ( 𝐴  −  1 ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  0  <  ( 𝐴  −  1 ) ) | 
						
							| 86 |  | ltmuldiv2 | ⊢ ( ( ( 𝐴 ↑ 𝑘 )  ∈  ℝ  ∧  ( 2  ·  𝐵 )  ∈  ℝ  ∧  ( ( 𝐴  −  1 )  ∈  ℝ  ∧  0  <  ( 𝐴  −  1 ) ) )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 2  ·  𝐵 )  ↔  ( 𝐴 ↑ 𝑘 )  <  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) ) ) ) | 
						
							| 87 | 19 78 22 85 86 | syl112anc | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐴  −  1 )  ·  ( 𝐴 ↑ 𝑘 ) )  <  ( 2  ·  𝐵 )  ↔  ( 𝐴 ↑ 𝑘 )  <  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) ) ) ) | 
						
							| 88 | 83 87 | mpbid | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  <  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) ) ) | 
						
							| 89 | 19 20 88 | ltnsymd | ⊢ ( ( ( 𝜑  ∧  1  <  𝐴 )  ∧  𝑘  ∈  ℕ )  →  ¬  ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  <  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 90 | 89 | nrexdv | ⊢ ( ( 𝜑  ∧  1  <  𝐴 )  →  ¬  ∃ 𝑘  ∈  ℕ ( ( 2  ·  𝐵 )  /  ( 𝐴  −  1 ) )  <  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 91 | 16 90 | pm2.65da | ⊢ ( 𝜑  →  ¬  1  <  𝐴 ) | 
						
							| 92 |  | lenlt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐴  ≤  1  ↔  ¬  1  <  𝐴 ) ) | 
						
							| 93 | 1 9 92 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ≤  1  ↔  ¬  1  <  𝐴 ) ) | 
						
							| 94 | 91 93 | mpbird | ⊢ ( 𝜑  →  𝐴  ≤  1 ) |