Step |
Hyp |
Ref |
Expression |
1 |
|
abvcxp.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvcxp.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
abvcxp.f |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) ) |
4 |
1
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝐴 = ( AbsVal ‘ 𝑅 ) ) |
5 |
2
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
6 |
|
eqidd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
9 |
1
|
abvrcl |
⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝑅 ∈ Ring ) |
11 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
13 |
1 2
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
15 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝑆 ∈ ( 0 (,] 1 ) ) |
16 |
|
0xr |
⊢ 0 ∈ ℝ* |
17 |
|
1re |
⊢ 1 ∈ ℝ |
18 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑆 ∈ ( 0 (,] 1 ) ↔ ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1 ) ) ) |
19 |
16 17 18
|
mp2an |
⊢ ( 𝑆 ∈ ( 0 (,] 1 ) ↔ ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1 ) ) |
20 |
15 19
|
sylib |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1 ) ) |
21 |
20
|
simp1d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝑆 ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ ℝ ) |
23 |
12 14 22
|
recxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) ∈ ℝ ) |
24 |
23 3
|
fmptd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝐺 : 𝐵 ⟶ ℝ ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
26 |
2 25
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
27 |
10 26
|
syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) = ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) ) |
30 |
|
ovex |
⊢ ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) ∈ V |
31 |
29 3 30
|
fvmpt |
⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 → ( 𝐺 ‘ ( 0g ‘ 𝑅 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) ) |
32 |
27 31
|
syl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑅 ) ) = ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) ) |
33 |
1 25
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
34 |
33
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
35 |
34
|
oveq1d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) = ( 0 ↑𝑐 𝑆 ) ) |
36 |
21
|
recnd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝑆 ∈ ℂ ) |
37 |
20
|
simp2d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 0 < 𝑆 ) |
38 |
37
|
gt0ne0d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝑆 ≠ 0 ) |
39 |
36 38
|
0cxpd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 0 ↑𝑐 𝑆 ) = 0 ) |
40 |
35 39
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ↑𝑐 𝑆 ) = 0 ) |
41 |
32 40
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
42 |
|
simp1l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐴 ) |
43 |
|
simp2 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ 𝐵 ) |
44 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
45 |
42 43 44
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
46 |
1 2 25
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑦 ) ) |
47 |
46
|
3adant1r |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑦 ) ) |
48 |
45 47
|
elrpd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ+ ) |
49 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 𝑆 ∈ ℝ ) |
50 |
48 49
|
rpcxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ∈ ℝ+ ) |
51 |
50
|
rpgt0d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ) |
52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
53 |
52
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) = ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ) |
54 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ∈ V |
55 |
53 3 54
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐺 ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ) |
56 |
43 55
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ) |
57 |
51 56
|
breqtrrd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐺 ‘ 𝑦 ) ) |
58 |
|
simp1l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐹 ∈ 𝐴 ) |
59 |
|
simp2l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ 𝐵 ) |
60 |
|
simp3l |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑧 ∈ 𝐵 ) |
61 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
62 |
1 2 61
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
63 |
58 59 60 62
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
64 |
63
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) = ( ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) ) |
65 |
58 59 44
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
66 |
1 2
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
67 |
58 59 66
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
68 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
69 |
58 60 68
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
70 |
1 2
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
71 |
58 60 70
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
72 |
36
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑆 ∈ ℂ ) |
73 |
65 67 69 71 72
|
mulcxpd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) = ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) · ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
74 |
64 73
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) = ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) · ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
75 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
76 |
2 61
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
77 |
75 59 60 76
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
78 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
79 |
78
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) = ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
80 |
|
ovex |
⊢ ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ∈ V |
81 |
79 3 80
|
fvmpt |
⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( 𝐺 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
82 |
77 81
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
83 |
59 55
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ) |
84 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
85 |
84
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) = ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) |
86 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ∈ V |
87 |
85 3 86
|
fvmpt |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) |
88 |
60 87
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) |
89 |
83 88
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) · ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
90 |
74 82 89
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
91 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
92 |
75 91
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑅 ∈ Grp ) |
93 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
94 |
2 93
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
95 |
92 59 60 94
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
96 |
1 2
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ∈ ℝ ) |
97 |
58 95 96
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ∈ ℝ ) |
98 |
1 2
|
abvge0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
99 |
58 95 98
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 ≤ ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
100 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1 ) ) |
101 |
100
|
simp1d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑆 ∈ ℝ ) |
102 |
97 99 101
|
recxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ∈ ℝ ) |
103 |
65 69
|
readdcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
104 |
65 69 67 71
|
addge0d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
105 |
103 104 101
|
recxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) ∈ ℝ ) |
106 |
65 67 101
|
recxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) ∈ ℝ ) |
107 |
69 71 101
|
recxpcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ∈ ℝ ) |
108 |
106 107
|
readdcld |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) + ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ∈ ℝ ) |
109 |
1 2 93
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
110 |
58 59 60 109
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ) |
111 |
100
|
simp2d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 < 𝑆 ) |
112 |
101 111
|
elrpd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑆 ∈ ℝ+ ) |
113 |
97 99 103 104 112
|
cxple2d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ↔ ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ≤ ( ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) ) ) |
114 |
110 113
|
mpbid |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ≤ ( ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) ) |
115 |
100
|
simp3d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑆 ≤ 1 ) |
116 |
65 67 69 71 112 115
|
cxpaddle |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) + ( 𝐹 ‘ 𝑧 ) ) ↑𝑐 𝑆 ) ≤ ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) + ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
117 |
102 105 108 114 116
|
letrd |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ≤ ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) + ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
118 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
119 |
118
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) ↑𝑐 𝑆 ) = ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
120 |
|
ovex |
⊢ ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ∈ V |
121 |
119 3 120
|
fvmpt |
⊢ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 → ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
122 |
95 121
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ↑𝑐 𝑆 ) ) |
123 |
83 88
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( ( 𝐺 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) ↑𝑐 𝑆 ) + ( ( 𝐹 ‘ 𝑧 ) ↑𝑐 𝑆 ) ) ) |
124 |
117 122 123
|
3brtr4d |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐺 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ≤ ( ( 𝐺 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
125 |
4 5 6 7 8 10 24 41 57 90 124
|
isabvd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑆 ∈ ( 0 (,] 1 ) ) → 𝐺 ∈ 𝐴 ) |