Step |
Hyp |
Ref |
Expression |
1 |
|
abvcxp.a |
|- A = ( AbsVal ` R ) |
2 |
|
abvcxp.b |
|- B = ( Base ` R ) |
3 |
|
abvcxp.f |
|- G = ( x e. B |-> ( ( F ` x ) ^c S ) ) |
4 |
1
|
a1i |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> A = ( AbsVal ` R ) ) |
5 |
2
|
a1i |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> B = ( Base ` R ) ) |
6 |
|
eqidd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( +g ` R ) = ( +g ` R ) ) |
7 |
|
eqidd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( .r ` R ) = ( .r ` R ) ) |
8 |
|
eqidd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0g ` R ) = ( 0g ` R ) ) |
9 |
1
|
abvrcl |
|- ( F e. A -> R e. Ring ) |
10 |
9
|
adantr |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> R e. Ring ) |
11 |
1 2
|
abvcl |
|- ( ( F e. A /\ x e. B ) -> ( F ` x ) e. RR ) |
12 |
11
|
adantlr |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> ( F ` x ) e. RR ) |
13 |
1 2
|
abvge0 |
|- ( ( F e. A /\ x e. B ) -> 0 <_ ( F ` x ) ) |
14 |
13
|
adantlr |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> 0 <_ ( F ` x ) ) |
15 |
|
simpr |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. ( 0 (,] 1 ) ) |
16 |
|
0xr |
|- 0 e. RR* |
17 |
|
1re |
|- 1 e. RR |
18 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( S e. ( 0 (,] 1 ) <-> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) ) |
19 |
16 17 18
|
mp2an |
|- ( S e. ( 0 (,] 1 ) <-> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) |
20 |
15 19
|
sylib |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) |
21 |
20
|
simp1d |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. RR ) |
22 |
21
|
adantr |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> S e. RR ) |
23 |
12 14 22
|
recxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> ( ( F ` x ) ^c S ) e. RR ) |
24 |
23 3
|
fmptd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> G : B --> RR ) |
25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
26 |
2 25
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. B ) |
27 |
10 26
|
syl |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0g ` R ) e. B ) |
28 |
|
fveq2 |
|- ( x = ( 0g ` R ) -> ( F ` x ) = ( F ` ( 0g ` R ) ) ) |
29 |
28
|
oveq1d |
|- ( x = ( 0g ` R ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) |
30 |
|
ovex |
|- ( ( F ` ( 0g ` R ) ) ^c S ) e. _V |
31 |
29 3 30
|
fvmpt |
|- ( ( 0g ` R ) e. B -> ( G ` ( 0g ` R ) ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) |
32 |
27 31
|
syl |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( G ` ( 0g ` R ) ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) |
33 |
1 25
|
abv0 |
|- ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) |
34 |
33
|
adantr |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( F ` ( 0g ` R ) ) = 0 ) |
35 |
34
|
oveq1d |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( ( F ` ( 0g ` R ) ) ^c S ) = ( 0 ^c S ) ) |
36 |
21
|
recnd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. CC ) |
37 |
20
|
simp2d |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> 0 < S ) |
38 |
37
|
gt0ne0d |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S =/= 0 ) |
39 |
36 38
|
0cxpd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0 ^c S ) = 0 ) |
40 |
35 39
|
eqtrd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( ( F ` ( 0g ` R ) ) ^c S ) = 0 ) |
41 |
32 40
|
eqtrd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( G ` ( 0g ` R ) ) = 0 ) |
42 |
|
simp1l |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> F e. A ) |
43 |
|
simp2 |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> y e. B ) |
44 |
1 2
|
abvcl |
|- ( ( F e. A /\ y e. B ) -> ( F ` y ) e. RR ) |
45 |
42 43 44
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( F ` y ) e. RR ) |
46 |
1 2 25
|
abvgt0 |
|- ( ( F e. A /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( F ` y ) ) |
47 |
46
|
3adant1r |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( F ` y ) ) |
48 |
45 47
|
elrpd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( F ` y ) e. RR+ ) |
49 |
21
|
3ad2ant1 |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> S e. RR ) |
50 |
48 49
|
rpcxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( ( F ` y ) ^c S ) e. RR+ ) |
51 |
50
|
rpgt0d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( ( F ` y ) ^c S ) ) |
52 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
53 |
52
|
oveq1d |
|- ( x = y -> ( ( F ` x ) ^c S ) = ( ( F ` y ) ^c S ) ) |
54 |
|
ovex |
|- ( ( F ` y ) ^c S ) e. _V |
55 |
53 3 54
|
fvmpt |
|- ( y e. B -> ( G ` y ) = ( ( F ` y ) ^c S ) ) |
56 |
43 55
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( G ` y ) = ( ( F ` y ) ^c S ) ) |
57 |
51 56
|
breqtrrd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( G ` y ) ) |
58 |
|
simp1l |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> F e. A ) |
59 |
|
simp2l |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> y e. B ) |
60 |
|
simp3l |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> z e. B ) |
61 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
62 |
1 2 61
|
abvmul |
|- ( ( F e. A /\ y e. B /\ z e. B ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
63 |
58 59 60 62
|
syl3anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) |
64 |
63
|
oveq1d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) = ( ( ( F ` y ) x. ( F ` z ) ) ^c S ) ) |
65 |
58 59 44
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` y ) e. RR ) |
66 |
1 2
|
abvge0 |
|- ( ( F e. A /\ y e. B ) -> 0 <_ ( F ` y ) ) |
67 |
58 59 66
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` y ) ) |
68 |
1 2
|
abvcl |
|- ( ( F e. A /\ z e. B ) -> ( F ` z ) e. RR ) |
69 |
58 60 68
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` z ) e. RR ) |
70 |
1 2
|
abvge0 |
|- ( ( F e. A /\ z e. B ) -> 0 <_ ( F ` z ) ) |
71 |
58 60 70
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` z ) ) |
72 |
36
|
3ad2ant1 |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. CC ) |
73 |
65 67 69 71 72
|
mulcxpd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) x. ( F ` z ) ) ^c S ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) |
74 |
64 73
|
eqtrd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) |
75 |
10
|
3ad2ant1 |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> R e. Ring ) |
76 |
2 61
|
ringcl |
|- ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y ( .r ` R ) z ) e. B ) |
77 |
75 59 60 76
|
syl3anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( y ( .r ` R ) z ) e. B ) |
78 |
|
fveq2 |
|- ( x = ( y ( .r ` R ) z ) -> ( F ` x ) = ( F ` ( y ( .r ` R ) z ) ) ) |
79 |
78
|
oveq1d |
|- ( x = ( y ( .r ` R ) z ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) |
80 |
|
ovex |
|- ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) e. _V |
81 |
79 3 80
|
fvmpt |
|- ( ( y ( .r ` R ) z ) e. B -> ( G ` ( y ( .r ` R ) z ) ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) |
82 |
77 81
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( .r ` R ) z ) ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) |
83 |
59 55
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` y ) = ( ( F ` y ) ^c S ) ) |
84 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
85 |
84
|
oveq1d |
|- ( x = z -> ( ( F ` x ) ^c S ) = ( ( F ` z ) ^c S ) ) |
86 |
|
ovex |
|- ( ( F ` z ) ^c S ) e. _V |
87 |
85 3 86
|
fvmpt |
|- ( z e. B -> ( G ` z ) = ( ( F ` z ) ^c S ) ) |
88 |
60 87
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` z ) = ( ( F ` z ) ^c S ) ) |
89 |
83 88
|
oveq12d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( G ` y ) x. ( G ` z ) ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) |
90 |
74 82 89
|
3eqtr4d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( .r ` R ) z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) |
91 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
92 |
75 91
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> R e. Grp ) |
93 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
94 |
2 93
|
grpcl |
|- ( ( R e. Grp /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) |
95 |
92 59 60 94
|
syl3anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( y ( +g ` R ) z ) e. B ) |
96 |
1 2
|
abvcl |
|- ( ( F e. A /\ ( y ( +g ` R ) z ) e. B ) -> ( F ` ( y ( +g ` R ) z ) ) e. RR ) |
97 |
58 95 96
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( +g ` R ) z ) ) e. RR ) |
98 |
1 2
|
abvge0 |
|- ( ( F e. A /\ ( y ( +g ` R ) z ) e. B ) -> 0 <_ ( F ` ( y ( +g ` R ) z ) ) ) |
99 |
58 95 98
|
syl2anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` ( y ( +g ` R ) z ) ) ) |
100 |
20
|
3ad2ant1 |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) |
101 |
100
|
simp1d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. RR ) |
102 |
97 99 101
|
recxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) e. RR ) |
103 |
65 69
|
readdcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` y ) + ( F ` z ) ) e. RR ) |
104 |
65 69 67 71
|
addge0d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( ( F ` y ) + ( F ` z ) ) ) |
105 |
103 104 101
|
recxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) + ( F ` z ) ) ^c S ) e. RR ) |
106 |
65 67 101
|
recxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` y ) ^c S ) e. RR ) |
107 |
69 71 101
|
recxpcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` z ) ^c S ) e. RR ) |
108 |
106 107
|
readdcld |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) e. RR ) |
109 |
1 2 93
|
abvtri |
|- ( ( F e. A /\ y e. B /\ z e. B ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
110 |
58 59 60 109
|
syl3anc |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) |
111 |
100
|
simp2d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 < S ) |
112 |
101 111
|
elrpd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. RR+ ) |
113 |
97 99 103 104 112
|
cxple2d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) <-> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) + ( F ` z ) ) ^c S ) ) ) |
114 |
110 113
|
mpbid |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) + ( F ` z ) ) ^c S ) ) |
115 |
100
|
simp3d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S <_ 1 ) |
116 |
65 67 69 71 112 115
|
cxpaddle |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) + ( F ` z ) ) ^c S ) <_ ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) |
117 |
102 105 108 114 116
|
letrd |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) |
118 |
|
fveq2 |
|- ( x = ( y ( +g ` R ) z ) -> ( F ` x ) = ( F ` ( y ( +g ` R ) z ) ) ) |
119 |
118
|
oveq1d |
|- ( x = ( y ( +g ` R ) z ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) |
120 |
|
ovex |
|- ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) e. _V |
121 |
119 3 120
|
fvmpt |
|- ( ( y ( +g ` R ) z ) e. B -> ( G ` ( y ( +g ` R ) z ) ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) |
122 |
95 121
|
syl |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( +g ` R ) z ) ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) |
123 |
83 88
|
oveq12d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( G ` y ) + ( G ` z ) ) = ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) |
124 |
117 122 123
|
3brtr4d |
|- ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( +g ` R ) z ) ) <_ ( ( G ` y ) + ( G ` z ) ) ) |
125 |
4 5 6 7 8 10 24 41 57 90 124
|
isabvd |
|- ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> G e. A ) |