| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvcxp.a |  |-  A = ( AbsVal ` R ) | 
						
							| 2 |  | abvcxp.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | abvcxp.f |  |-  G = ( x e. B |-> ( ( F ` x ) ^c S ) ) | 
						
							| 4 | 1 | a1i |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> A = ( AbsVal ` R ) ) | 
						
							| 5 | 2 | a1i |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> B = ( Base ` R ) ) | 
						
							| 6 |  | eqidd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( +g ` R ) = ( +g ` R ) ) | 
						
							| 7 |  | eqidd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( .r ` R ) = ( .r ` R ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0g ` R ) = ( 0g ` R ) ) | 
						
							| 9 | 1 | abvrcl |  |-  ( F e. A -> R e. Ring ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> R e. Ring ) | 
						
							| 11 | 1 2 | abvcl |  |-  ( ( F e. A /\ x e. B ) -> ( F ` x ) e. RR ) | 
						
							| 12 | 11 | adantlr |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> ( F ` x ) e. RR ) | 
						
							| 13 | 1 2 | abvge0 |  |-  ( ( F e. A /\ x e. B ) -> 0 <_ ( F ` x ) ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> 0 <_ ( F ` x ) ) | 
						
							| 15 |  | simpr |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. ( 0 (,] 1 ) ) | 
						
							| 16 |  | 0xr |  |-  0 e. RR* | 
						
							| 17 |  | 1re |  |-  1 e. RR | 
						
							| 18 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( S e. ( 0 (,] 1 ) <-> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) ) | 
						
							| 19 | 16 17 18 | mp2an |  |-  ( S e. ( 0 (,] 1 ) <-> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) | 
						
							| 20 | 15 19 | sylib |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) | 
						
							| 21 | 20 | simp1d |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> S e. RR ) | 
						
							| 23 | 12 14 22 | recxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ x e. B ) -> ( ( F ` x ) ^c S ) e. RR ) | 
						
							| 24 | 23 3 | fmptd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> G : B --> RR ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 26 | 2 25 | ring0cl |  |-  ( R e. Ring -> ( 0g ` R ) e. B ) | 
						
							| 27 | 10 26 | syl |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0g ` R ) e. B ) | 
						
							| 28 |  | fveq2 |  |-  ( x = ( 0g ` R ) -> ( F ` x ) = ( F ` ( 0g ` R ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( x = ( 0g ` R ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) | 
						
							| 30 |  | ovex |  |-  ( ( F ` ( 0g ` R ) ) ^c S ) e. _V | 
						
							| 31 | 29 3 30 | fvmpt |  |-  ( ( 0g ` R ) e. B -> ( G ` ( 0g ` R ) ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) | 
						
							| 32 | 27 31 | syl |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( G ` ( 0g ` R ) ) = ( ( F ` ( 0g ` R ) ) ^c S ) ) | 
						
							| 33 | 1 25 | abv0 |  |-  ( F e. A -> ( F ` ( 0g ` R ) ) = 0 ) | 
						
							| 34 | 33 | adantr |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( F ` ( 0g ` R ) ) = 0 ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( ( F ` ( 0g ` R ) ) ^c S ) = ( 0 ^c S ) ) | 
						
							| 36 | 21 | recnd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S e. CC ) | 
						
							| 37 | 20 | simp2d |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> 0 < S ) | 
						
							| 38 | 37 | gt0ne0d |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> S =/= 0 ) | 
						
							| 39 | 36 38 | 0cxpd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( 0 ^c S ) = 0 ) | 
						
							| 40 | 35 39 | eqtrd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( ( F ` ( 0g ` R ) ) ^c S ) = 0 ) | 
						
							| 41 | 32 40 | eqtrd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> ( G ` ( 0g ` R ) ) = 0 ) | 
						
							| 42 |  | simp1l |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> F e. A ) | 
						
							| 43 |  | simp2 |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> y e. B ) | 
						
							| 44 | 1 2 | abvcl |  |-  ( ( F e. A /\ y e. B ) -> ( F ` y ) e. RR ) | 
						
							| 45 | 42 43 44 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( F ` y ) e. RR ) | 
						
							| 46 | 1 2 25 | abvgt0 |  |-  ( ( F e. A /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( F ` y ) ) | 
						
							| 47 | 46 | 3adant1r |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( F ` y ) ) | 
						
							| 48 | 45 47 | elrpd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( F ` y ) e. RR+ ) | 
						
							| 49 | 21 | 3ad2ant1 |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> S e. RR ) | 
						
							| 50 | 48 49 | rpcxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( ( F ` y ) ^c S ) e. RR+ ) | 
						
							| 51 | 50 | rpgt0d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( ( F ` y ) ^c S ) ) | 
						
							| 52 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 53 | 52 | oveq1d |  |-  ( x = y -> ( ( F ` x ) ^c S ) = ( ( F ` y ) ^c S ) ) | 
						
							| 54 |  | ovex |  |-  ( ( F ` y ) ^c S ) e. _V | 
						
							| 55 | 53 3 54 | fvmpt |  |-  ( y e. B -> ( G ` y ) = ( ( F ` y ) ^c S ) ) | 
						
							| 56 | 43 55 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> ( G ` y ) = ( ( F ` y ) ^c S ) ) | 
						
							| 57 | 51 56 | breqtrrd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ y e. B /\ y =/= ( 0g ` R ) ) -> 0 < ( G ` y ) ) | 
						
							| 58 |  | simp1l |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> F e. A ) | 
						
							| 59 |  | simp2l |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> y e. B ) | 
						
							| 60 |  | simp3l |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> z e. B ) | 
						
							| 61 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 62 | 1 2 61 | abvmul |  |-  ( ( F e. A /\ y e. B /\ z e. B ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) | 
						
							| 63 | 58 59 60 62 | syl3anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) x. ( F ` z ) ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) = ( ( ( F ` y ) x. ( F ` z ) ) ^c S ) ) | 
						
							| 65 | 58 59 44 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` y ) e. RR ) | 
						
							| 66 | 1 2 | abvge0 |  |-  ( ( F e. A /\ y e. B ) -> 0 <_ ( F ` y ) ) | 
						
							| 67 | 58 59 66 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` y ) ) | 
						
							| 68 | 1 2 | abvcl |  |-  ( ( F e. A /\ z e. B ) -> ( F ` z ) e. RR ) | 
						
							| 69 | 58 60 68 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` z ) e. RR ) | 
						
							| 70 | 1 2 | abvge0 |  |-  ( ( F e. A /\ z e. B ) -> 0 <_ ( F ` z ) ) | 
						
							| 71 | 58 60 70 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` z ) ) | 
						
							| 72 | 36 | 3ad2ant1 |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. CC ) | 
						
							| 73 | 65 67 69 71 72 | mulcxpd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) x. ( F ` z ) ) ^c S ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) | 
						
							| 74 | 64 73 | eqtrd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) | 
						
							| 75 | 10 | 3ad2ant1 |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> R e. Ring ) | 
						
							| 76 | 2 61 | ringcl |  |-  ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y ( .r ` R ) z ) e. B ) | 
						
							| 77 | 75 59 60 76 | syl3anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( y ( .r ` R ) z ) e. B ) | 
						
							| 78 |  | fveq2 |  |-  ( x = ( y ( .r ` R ) z ) -> ( F ` x ) = ( F ` ( y ( .r ` R ) z ) ) ) | 
						
							| 79 | 78 | oveq1d |  |-  ( x = ( y ( .r ` R ) z ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) | 
						
							| 80 |  | ovex |  |-  ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) e. _V | 
						
							| 81 | 79 3 80 | fvmpt |  |-  ( ( y ( .r ` R ) z ) e. B -> ( G ` ( y ( .r ` R ) z ) ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) | 
						
							| 82 | 77 81 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( .r ` R ) z ) ) = ( ( F ` ( y ( .r ` R ) z ) ) ^c S ) ) | 
						
							| 83 | 59 55 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` y ) = ( ( F ` y ) ^c S ) ) | 
						
							| 84 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( x = z -> ( ( F ` x ) ^c S ) = ( ( F ` z ) ^c S ) ) | 
						
							| 86 |  | ovex |  |-  ( ( F ` z ) ^c S ) e. _V | 
						
							| 87 | 85 3 86 | fvmpt |  |-  ( z e. B -> ( G ` z ) = ( ( F ` z ) ^c S ) ) | 
						
							| 88 | 60 87 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` z ) = ( ( F ` z ) ^c S ) ) | 
						
							| 89 | 83 88 | oveq12d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( G ` y ) x. ( G ` z ) ) = ( ( ( F ` y ) ^c S ) x. ( ( F ` z ) ^c S ) ) ) | 
						
							| 90 | 74 82 89 | 3eqtr4d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( .r ` R ) z ) ) = ( ( G ` y ) x. ( G ` z ) ) ) | 
						
							| 91 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 92 | 75 91 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> R e. Grp ) | 
						
							| 93 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 94 | 2 93 | grpcl |  |-  ( ( R e. Grp /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) | 
						
							| 95 | 92 59 60 94 | syl3anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( y ( +g ` R ) z ) e. B ) | 
						
							| 96 | 1 2 | abvcl |  |-  ( ( F e. A /\ ( y ( +g ` R ) z ) e. B ) -> ( F ` ( y ( +g ` R ) z ) ) e. RR ) | 
						
							| 97 | 58 95 96 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( +g ` R ) z ) ) e. RR ) | 
						
							| 98 | 1 2 | abvge0 |  |-  ( ( F e. A /\ ( y ( +g ` R ) z ) e. B ) -> 0 <_ ( F ` ( y ( +g ` R ) z ) ) ) | 
						
							| 99 | 58 95 98 | syl2anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( F ` ( y ( +g ` R ) z ) ) ) | 
						
							| 100 | 20 | 3ad2ant1 |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( S e. RR /\ 0 < S /\ S <_ 1 ) ) | 
						
							| 101 | 100 | simp1d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. RR ) | 
						
							| 102 | 97 99 101 | recxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) e. RR ) | 
						
							| 103 | 65 69 | readdcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` y ) + ( F ` z ) ) e. RR ) | 
						
							| 104 | 65 69 67 71 | addge0d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 <_ ( ( F ` y ) + ( F ` z ) ) ) | 
						
							| 105 | 103 104 101 | recxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) + ( F ` z ) ) ^c S ) e. RR ) | 
						
							| 106 | 65 67 101 | recxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` y ) ^c S ) e. RR ) | 
						
							| 107 | 69 71 101 | recxpcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` z ) ^c S ) e. RR ) | 
						
							| 108 | 106 107 | readdcld |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) e. RR ) | 
						
							| 109 | 1 2 93 | abvtri |  |-  ( ( F e. A /\ y e. B /\ z e. B ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) | 
						
							| 110 | 58 59 60 109 | syl3anc |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) ) | 
						
							| 111 | 100 | simp2d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> 0 < S ) | 
						
							| 112 | 101 111 | elrpd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S e. RR+ ) | 
						
							| 113 | 97 99 103 104 112 | cxple2d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) <_ ( ( F ` y ) + ( F ` z ) ) <-> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) + ( F ` z ) ) ^c S ) ) ) | 
						
							| 114 | 110 113 | mpbid |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) + ( F ` z ) ) ^c S ) ) | 
						
							| 115 | 100 | simp3d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> S <_ 1 ) | 
						
							| 116 | 65 67 69 71 112 115 | cxpaddle |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( ( F ` y ) + ( F ` z ) ) ^c S ) <_ ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) | 
						
							| 117 | 102 105 108 114 116 | letrd |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) <_ ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) | 
						
							| 118 |  | fveq2 |  |-  ( x = ( y ( +g ` R ) z ) -> ( F ` x ) = ( F ` ( y ( +g ` R ) z ) ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( x = ( y ( +g ` R ) z ) -> ( ( F ` x ) ^c S ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) | 
						
							| 120 |  | ovex |  |-  ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) e. _V | 
						
							| 121 | 119 3 120 | fvmpt |  |-  ( ( y ( +g ` R ) z ) e. B -> ( G ` ( y ( +g ` R ) z ) ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) | 
						
							| 122 | 95 121 | syl |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( +g ` R ) z ) ) = ( ( F ` ( y ( +g ` R ) z ) ) ^c S ) ) | 
						
							| 123 | 83 88 | oveq12d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( ( G ` y ) + ( G ` z ) ) = ( ( ( F ` y ) ^c S ) + ( ( F ` z ) ^c S ) ) ) | 
						
							| 124 | 117 122 123 | 3brtr4d |  |-  ( ( ( F e. A /\ S e. ( 0 (,] 1 ) ) /\ ( y e. B /\ y =/= ( 0g ` R ) ) /\ ( z e. B /\ z =/= ( 0g ` R ) ) ) -> ( G ` ( y ( +g ` R ) z ) ) <_ ( ( G ` y ) + ( G ` z ) ) ) | 
						
							| 125 | 4 5 6 7 8 10 24 41 57 90 124 | isabvd |  |-  ( ( F e. A /\ S e. ( 0 (,] 1 ) ) -> G e. A ) |