Step |
Hyp |
Ref |
Expression |
1 |
|
padicval.j |
|- J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) |
2 |
|
id |
|- ( q = P -> q = P ) |
3 |
|
oveq1 |
|- ( q = P -> ( q pCnt x ) = ( P pCnt x ) ) |
4 |
3
|
negeqd |
|- ( q = P -> -u ( q pCnt x ) = -u ( P pCnt x ) ) |
5 |
2 4
|
oveq12d |
|- ( q = P -> ( q ^ -u ( q pCnt x ) ) = ( P ^ -u ( P pCnt x ) ) ) |
6 |
5
|
ifeq2d |
|- ( q = P -> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) = if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) |
7 |
6
|
mpteq2dv |
|- ( q = P -> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) |
8 |
|
qex |
|- QQ e. _V |
9 |
8
|
mptex |
|- ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) e. _V |
10 |
7 1 9
|
fvmpt |
|- ( P e. Prime -> ( J ` P ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) |