| Step | Hyp | Ref | Expression | 
						
							| 1 |  | padicval.j |  |-  J = ( q e. Prime |-> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) ) | 
						
							| 2 |  | id |  |-  ( q = P -> q = P ) | 
						
							| 3 |  | oveq1 |  |-  ( q = P -> ( q pCnt x ) = ( P pCnt x ) ) | 
						
							| 4 | 3 | negeqd |  |-  ( q = P -> -u ( q pCnt x ) = -u ( P pCnt x ) ) | 
						
							| 5 | 2 4 | oveq12d |  |-  ( q = P -> ( q ^ -u ( q pCnt x ) ) = ( P ^ -u ( P pCnt x ) ) ) | 
						
							| 6 | 5 | ifeq2d |  |-  ( q = P -> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) = if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) | 
						
							| 7 | 6 | mpteq2dv |  |-  ( q = P -> ( x e. QQ |-> if ( x = 0 , 0 , ( q ^ -u ( q pCnt x ) ) ) ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) | 
						
							| 8 |  | qex |  |-  QQ e. _V | 
						
							| 9 | 8 | mptex |  |-  ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) e. _V | 
						
							| 10 | 7 1 9 | fvmpt |  |-  ( P e. Prime -> ( J ` P ) = ( x e. QQ |-> if ( x = 0 , 0 , ( P ^ -u ( P pCnt x ) ) ) ) ) |