| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isabvd.a |
⊢ ( 𝜑 → 𝐴 = ( AbsVal ‘ 𝑅 ) ) |
| 2 |
|
isabvd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
isabvd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
| 4 |
|
isabvd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
| 5 |
|
isabvd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 6 |
|
isabvd.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
isabvd.2 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ ) |
| 8 |
|
isabvd.3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 9 |
|
isabvd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
| 10 |
|
isabvd.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
|
isabvd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
2
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ℝ ↔ 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) ) |
| 13 |
7 12
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 14 |
13
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 15 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 16 |
|
0le0 |
⊢ 0 ≤ 0 |
| 17 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 18 |
17 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 19 |
16 18
|
breqtrrid |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 22 |
21
|
breq2d |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 23 |
20 22
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 24 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝜑 ) |
| 25 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 27 |
25 26
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
| 28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
| 29 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 30 |
28 29
|
neeqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ≠ 0 ) |
| 31 |
24 27 30 9
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 < ( 𝐹 ‘ 𝑥 ) ) |
| 32 |
|
0re |
⊢ 0 ∈ ℝ |
| 33 |
15
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 34 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( 0 < ( 𝐹 ‘ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 |
32 33 34
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 0 < ( 𝐹 ‘ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 |
31 35
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 37 |
36
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 |
23 37
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 40 |
15 38 39
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 42 |
|
ffnfv |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 43 |
14 41 42
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ) |
| 44 |
31
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ 0 ) |
| 45 |
44
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ≠ ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) ≠ 0 ) ) |
| 46 |
45
|
necon4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
| 47 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 48 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) ) |
| 49 |
47 48
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 50 |
46 49
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ) |
| 51 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 53 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 54 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 56 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 57 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 59 |
56 57 58
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 60 |
54 55 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 61 |
53 60
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 62 |
61
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 63 |
21 51
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 64 |
63
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 0 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) |
| 66 |
65 55
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 67 |
66
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 69 |
68
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 0 · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 70 |
64 69
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 71 |
52 62 70
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 |
51
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = 0 ) |
| 73 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 74 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 75 |
56 57 58
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 76 |
54 74 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 77 |
73 76
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
| 78 |
77
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 80 |
79 51
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) = 0 ) |
| 81 |
80
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · 0 ) ) |
| 82 |
65 74
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 83 |
82
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 85 |
84
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · 0 ) = 0 ) |
| 86 |
81 85
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 87 |
72 78 86
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 88 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝜑 ) |
| 89 |
88 4
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → · = ( .r ‘ 𝑅 ) ) |
| 90 |
89
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 91 |
90
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 92 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 93 |
88 2
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 94 |
92 93
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 95 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
| 96 |
88 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 97 |
95 96
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑥 ≠ 0 ) |
| 98 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 99 |
98 93
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 100 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑅 ) ) |
| 101 |
100 96
|
neeqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → 𝑦 ≠ 0 ) |
| 102 |
88 94 97 99 101 10
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 103 |
91 102
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 104 |
71 87 103
|
pm2.61da2ne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 105 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 106 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 107 |
54 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 108 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 109 |
56 108 58
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 110 |
107 55 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 111 |
105 110
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 112 |
111
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 113 |
16 63
|
breqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 114 |
66 82
|
addge02d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 116 |
113 115
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 117 |
112 116
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 118 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 119 |
56 108 58
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 120 |
107 74 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑥 ) |
| 121 |
118 120
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑥 ) |
| 122 |
121
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 123 |
16 80
|
breqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 124 |
82 66
|
addge01d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 125 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 126 |
123 125
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 127 |
122 126
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑦 = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 128 |
88 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → + = ( +g ‘ 𝑅 ) ) |
| 129 |
128
|
oveqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 130 |
129
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
| 131 |
88 94 97 99 101 11
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 132 |
130 131
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 133 |
117 127 132
|
pm2.61da2ne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 134 |
104 133
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 135 |
134
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 136 |
135
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 137 |
50 136
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 138 |
137
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 139 |
|
eqid |
⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) |
| 140 |
139 56 108 57 58
|
isabv |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 141 |
6 140
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑅 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 142 |
43 138 141
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( AbsVal ‘ 𝑅 ) ) |
| 143 |
142 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |