| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qcn | ⊢ ( 𝐵  ∈  ℚ  →  𝐵  ∈  ℂ ) | 
						
							| 2 |  | pncan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℚ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  =  𝐴 ) | 
						
							| 6 |  | qsubcl | ⊢ ( ( ( 𝐴  +  𝐵 )  ∈  ℚ  ∧  𝐵  ∈  ℚ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℚ ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐵  ∈  ℚ  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℚ ) | 
						
							| 8 | 7 | adantlr | ⊢ ( ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  →  ( ( 𝐴  +  𝐵 )  −  𝐵 )  ∈  ℚ ) | 
						
							| 9 | 5 8 | eqeltrrd | ⊢ ( ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  →  𝐴  ∈  ℚ ) | 
						
							| 10 | 9 | ex | ⊢ ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℚ  →  𝐴  ∈  ℚ ) ) | 
						
							| 11 |  | qaddcl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐵  ∈  ℚ )  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) | 
						
							| 12 | 11 | expcom | ⊢ ( 𝐵  ∈  ℚ  →  ( 𝐴  ∈  ℚ  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  ∈  ℚ  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) ) | 
						
							| 14 | 10 13 | impbid | ⊢ ( ( 𝐵  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  ∈  ℚ  ↔  𝐴  ∈  ℚ ) ) | 
						
							| 15 | 14 | pm5.32da | ⊢ ( 𝐵  ∈  ℚ  →  ( ( 𝐴  ∈  ℂ  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℚ ) ) ) | 
						
							| 16 |  | qcn | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℂ ) | 
						
							| 17 | 16 | pm4.71ri | ⊢ ( 𝐴  ∈  ℚ  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℚ ) ) | 
						
							| 18 | 15 17 | bitr4di | ⊢ ( 𝐵  ∈  ℚ  →  ( ( 𝐴  ∈  ℂ  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  ↔  𝐴  ∈  ℚ ) ) |