| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.5 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) ↔ 𝜓 ) ) |
| 2 |
1
|
ralrexbid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 3 |
2
|
biimpcd |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 4 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
| 6 |
5
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 7 |
4 6
|
sylbir |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 8 |
|
ax-1 |
⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) |
| 9 |
8
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 10 |
7 9
|
ja |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 11 |
3 10
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |