| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ancrb |
⊢ ( ( 𝜑 → 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 2 |
1
|
albii |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 4 |
|
nfsab1 |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∣ 𝜑 } |
| 5 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
| 6 |
5
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
| 7 |
4 6
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) |
| 8 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
| 9 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 10 |
8 9
|
bitr3id |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 11 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 12 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 13 |
11 12
|
bitr3id |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 14 |
10 13
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) ) |
| 15 |
3 7 14
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 16 |
|
eqss |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } ↔ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } ∧ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 17 |
|
rabssab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } |
| 18 |
17
|
biantrur |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } ∧ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 19 |
|
df-ss |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ) |
| 20 |
16 18 19
|
3bitr2ri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } ) |
| 21 |
2 15 20
|
3bitri |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } ) |