| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancrb | ⊢ ( ( 𝜑  →  𝑥  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝐴 )  ↔  ∀ 𝑥 ( 𝜑  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 4 |  | nfsab1 | ⊢ Ⅎ 𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 } | 
						
							| 5 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝜑 } | 
						
							| 6 | 5 | nfcri | ⊢ Ⅎ 𝑥 𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } | 
						
							| 7 | 4 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 8 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜑 ) | 
						
							| 9 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 10 | 8 9 | bitr3id | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝑦  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 11 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 13 | 11 12 | bitr3id | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 14 | 10 13 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  ↔  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) ) | 
						
							| 15 | 3 7 14 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝜑  →  ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 16 |  | eqss | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  𝜑 }  ↔  ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜑 }  ∧  { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 17 |  | rabssab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜑 } | 
						
							| 18 | 17 | biantrur | ⊢ ( { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∣  𝜑 }  ∧  { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 19 |  | df-ss | ⊢ ( { 𝑥  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜑 }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 20 | 16 18 19 | 3bitr2ri | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝑦  ∈  { 𝑥  ∈  𝐴  ∣  𝜑 } )  ↔  { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  𝜑 } ) | 
						
							| 21 | 2 15 20 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝐴 )  ↔  { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  𝜑 } ) |