Metamath Proof Explorer


Theorem rabrabi

Description: Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022) Avoid ax-10 , ax-11 and ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis rabrabi.1 ( 𝑥 = 𝑦 → ( 𝜒𝜑 ) )
Assertion rabrabi { 𝑥 ∈ { 𝑦𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜒𝜓 ) }

Proof

Step Hyp Ref Expression
1 rabrabi.1 ( 𝑥 = 𝑦 → ( 𝜒𝜑 ) )
2 df-rab { 𝑦𝐴𝜑 } = { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
3 2 eleq2i ( 𝑥 ∈ { 𝑦𝐴𝜑 } ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } )
4 df-clab ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦𝐴𝜑 ) )
5 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐴𝑥𝐴 ) )
6 1 bicomd ( 𝑥 = 𝑦 → ( 𝜑𝜒 ) )
7 6 equcoms ( 𝑦 = 𝑥 → ( 𝜑𝜒 ) )
8 5 7 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝐴𝜑 ) ↔ ( 𝑥𝐴𝜒 ) ) )
9 8 sbievw ( [ 𝑥 / 𝑦 ] ( 𝑦𝐴𝜑 ) ↔ ( 𝑥𝐴𝜒 ) )
10 4 9 bitri ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } ↔ ( 𝑥𝐴𝜒 ) )
11 3 10 bitri ( 𝑥 ∈ { 𝑦𝐴𝜑 } ↔ ( 𝑥𝐴𝜒 ) )
12 11 anbi1i ( ( 𝑥 ∈ { 𝑦𝐴𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥𝐴𝜒 ) ∧ 𝜓 ) )
13 anass ( ( ( 𝑥𝐴𝜒 ) ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜒𝜓 ) ) )
14 12 13 bitri ( ( 𝑥 ∈ { 𝑦𝐴𝜑 } ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜒𝜓 ) ) )
15 14 rabbia2 { 𝑥 ∈ { 𝑦𝐴𝜑 } ∣ 𝜓 } = { 𝑥𝐴 ∣ ( 𝜒𝜓 ) }