Metamath Proof Explorer


Theorem ralnex3

Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020) (Proof shortened by Wolf Lammen, 18-May-2023)

Ref Expression
Assertion ralnex3 ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )

Proof

Step Hyp Ref Expression
1 ralnex ( ∀ 𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃ 𝑧𝐶 𝜑 )
2 1 2ralbii ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵 ¬ ∃ 𝑧𝐶 𝜑 )
3 ralnex2 ( ∀ 𝑥𝐴𝑦𝐵 ¬ ∃ 𝑧𝐶 𝜑 ↔ ¬ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )
4 2 3 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 )