| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxfr.1 | ⊢ ( 𝑦  ∈  𝐶  →  𝐴  ∈  𝐵 ) | 
						
							| 2 |  | ralxfr.2 | ⊢ ( 𝑥  ∈  𝐵  →  ∃ 𝑦  ∈  𝐶 𝑥  =  𝐴 ) | 
						
							| 3 |  | ralxfr.3 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 | 3 | rspcv | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝜑  →  𝜓 ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝑦  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐵 𝜑  →  𝜓 ) ) | 
						
							| 6 | 5 | com12 | ⊢ ( ∀ 𝑥  ∈  𝐵 𝜑  →  ( 𝑦  ∈  𝐶  →  𝜓 ) ) | 
						
							| 7 | 6 | ralrimiv | ⊢ ( ∀ 𝑥  ∈  𝐵 𝜑  →  ∀ 𝑦  ∈  𝐶 𝜓 ) | 
						
							| 8 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝐶 𝜓 | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 10 |  | rsp | ⊢ ( ∀ 𝑦  ∈  𝐶 𝜓  →  ( 𝑦  ∈  𝐶  →  𝜓 ) ) | 
						
							| 11 | 3 | biimprcd | ⊢ ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) | 
						
							| 12 | 10 11 | syl6 | ⊢ ( ∀ 𝑦  ∈  𝐶 𝜓  →  ( 𝑦  ∈  𝐶  →  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 13 | 8 9 12 | rexlimd | ⊢ ( ∀ 𝑦  ∈  𝐶 𝜓  →  ( ∃ 𝑦  ∈  𝐶 𝑥  =  𝐴  →  𝜑 ) ) | 
						
							| 14 | 2 13 | syl5 | ⊢ ( ∀ 𝑦  ∈  𝐶 𝜓  →  ( 𝑥  ∈  𝐵  →  𝜑 ) ) | 
						
							| 15 | 14 | ralrimiv | ⊢ ( ∀ 𝑦  ∈  𝐶 𝜓  →  ∀ 𝑥  ∈  𝐵 𝜑 ) | 
						
							| 16 | 7 15 | impbii | ⊢ ( ∀ 𝑥  ∈  𝐵 𝜑  ↔  ∀ 𝑦  ∈  𝐶 𝜓 ) |