Step |
Hyp |
Ref |
Expression |
1 |
|
rankf |
⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On |
2 |
|
rankelb |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝑦 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝑦 ) ) ) |
3 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
4 |
|
fvex |
⊢ ( rank ‘ 𝑦 ) ∈ V |
5 |
4
|
epeli |
⊢ ( ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝑦 ) ) |
6 |
2 3 5
|
3imtr4g |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) ) |
7 |
6
|
rgen |
⊢ ∀ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) |
8 |
7
|
rgenw |
⊢ ∀ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∀ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) |
9 |
|
df-relp |
⊢ ( rank RelPres E , E ( ∪ ( 𝑅1 “ On ) , On ) ↔ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On ∧ ∀ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∀ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) ) ) |
10 |
1 8 9
|
mpbir2an |
⊢ rank RelPres E , E ( ∪ ( 𝑅1 “ On ) , On ) |