Metamath Proof Explorer


Theorem rankrelp

Description: The rank function preserves e. . (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion rankrelp rank RelPres E , E ( ( 𝑅1 “ On ) , On )

Proof

Step Hyp Ref Expression
1 rankf rank : ( 𝑅1 “ On ) ⟶ On
2 rankelb ( 𝑦 ( 𝑅1 “ On ) → ( 𝑥𝑦 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝑦 ) ) )
3 epel ( 𝑥 E 𝑦𝑥𝑦 )
4 fvex ( rank ‘ 𝑦 ) ∈ V
5 4 epeli ( ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝑦 ) )
6 2 3 5 3imtr4g ( 𝑦 ( 𝑅1 “ On ) → ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) )
7 6 rgen 𝑦 ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) )
8 7 rgenw 𝑥 ( 𝑅1 “ On ) ∀ 𝑦 ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) )
9 df-relp ( rank RelPres E , E ( ( 𝑅1 “ On ) , On ) ↔ ( rank : ( 𝑅1 “ On ) ⟶ On ∧ ∀ 𝑥 ( 𝑅1 “ On ) ∀ 𝑦 ( 𝑅1 “ On ) ( 𝑥 E 𝑦 → ( rank ‘ 𝑥 ) E ( rank ‘ 𝑦 ) ) ) )
10 1 8 9 mpbir2an rank RelPres E , E ( ( 𝑅1 “ On ) , On )