Description: Alternate proof of reex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 23-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | reexALT | ⊢ ℝ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnexALT | ⊢ ℕ ∈ V | |
2 | qexALT | ⊢ ℚ ∈ V | |
3 | 1 2 | rpnnen1 | ⊢ ℝ ≼ ( ℚ ↑m ℕ ) |
4 | reldom | ⊢ Rel ≼ | |
5 | 4 | brrelex1i | ⊢ ( ℝ ≼ ( ℚ ↑m ℕ ) → ℝ ∈ V ) |
6 | 3 5 | ax-mp | ⊢ ℝ ∈ V |