| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elq | 
							⊢ ( 𝑥  ∈  ℚ  ↔  ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℕ 𝑥  =  ( 𝑦  /  𝑧 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  =  ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑦  /  𝑧 )  ∈  V  | 
						
						
							| 4 | 
							
								2 3
							 | 
							elrnmpo | 
							⊢ ( 𝑥  ∈  ran  ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  ↔  ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℕ 𝑥  =  ( 𝑦  /  𝑧 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							bitr4i | 
							⊢ ( 𝑥  ∈  ℚ  ↔  𝑥  ∈  ran  ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqriv | 
							⊢ ℚ  =  ran  ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							zexALT | 
							⊢ ℤ  ∈  V  | 
						
						
							| 8 | 
							
								
							 | 
							nnexALT | 
							⊢ ℕ  ∈  V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpoex | 
							⊢ ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							rnex | 
							⊢ ran  ( 𝑦  ∈  ℤ ,  𝑧  ∈  ℕ  ↦  ( 𝑦  /  𝑧 ) )  ∈  V  | 
						
						
							| 11 | 
							
								6 10
							 | 
							eqeltri | 
							⊢ ℚ  ∈  V  |