Metamath Proof Explorer


Theorem qexALT

Description: Alternate proof of qex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion qexALT V

Proof

Step Hyp Ref Expression
1 elq xyzx=yz
2 eqid y,zyz=y,zyz
3 ovex yzV
4 2 3 elrnmpo xrany,zyzyzx=yz
5 1 4 bitr4i xxrany,zyz
6 5 eqriv =rany,zyz
7 zexALT V
8 nnexALT V
9 7 8 mpoex y,zyzV
10 9 rnex rany,zyzV
11 6 10 eqeltri V