| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rpnnen1.n | 
							⊢ ℕ  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							rpnnen1.q | 
							⊢ ℚ  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑚  /  𝑘 )  =  ( 𝑛  /  𝑘 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							breq1d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  /  𝑘 )  <  𝑥  ↔  ( 𝑛  /  𝑘 )  <  𝑥 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							cbvrabv | 
							⊢ { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 }  =  { 𝑛  ∈  ℤ  ∣  ( 𝑛  /  𝑘 )  <  𝑥 }  | 
						
						
							| 6 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑗  =  𝑘  →  ( 𝑚  /  𝑗 )  =  ( 𝑚  /  𝑘 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							breq1d | 
							⊢ ( 𝑗  =  𝑘  →  ( ( 𝑚  /  𝑗 )  <  𝑦  ↔  ( 𝑚  /  𝑘 )  <  𝑦 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rabbidv | 
							⊢ ( 𝑗  =  𝑘  →  { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 }  =  { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } )  | 
						
						
							| 9 | 
							
								8
							 | 
							supeq1d | 
							⊢ ( 𝑗  =  𝑘  →  sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 } ,  ℝ ,   <  )  =  sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  ) )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							⊢ ( 𝑗  =  𝑘  →  𝑗  =  𝑘 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							oveq12d | 
							⊢ ( 𝑗  =  𝑘  →  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑗 )  =  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑘 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							cbvmptv | 
							⊢ ( 𝑗  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑗 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑘 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑚  /  𝑘 )  <  𝑦  ↔  ( 𝑚  /  𝑘 )  <  𝑥 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rabbidv | 
							⊢ ( 𝑦  =  𝑥  →  { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 }  =  { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } )  | 
						
						
							| 15 | 
							
								14
							 | 
							supeq1d | 
							⊢ ( 𝑦  =  𝑥  →  sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  )  =  sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } ,  ℝ ,   <  ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑘 )  =  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } ,  ℝ ,   <  )  /  𝑘 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpteq2dv | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑘  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑘 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } ,  ℝ ,   <  )  /  𝑘 ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							eqtrid | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑗  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑗 ) )  =  ( 𝑘  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } ,  ℝ ,   <  )  /  𝑘 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ℝ  ↦  ( 𝑗  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑗 )  <  𝑦 } ,  ℝ ,   <  )  /  𝑗 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑘  ∈  ℕ  ↦  ( sup ( { 𝑚  ∈  ℤ  ∣  ( 𝑚  /  𝑘 )  <  𝑥 } ,  ℝ ,   <  )  /  𝑘 ) ) )  | 
						
						
							| 20 | 
							
								5 19 1 2
							 | 
							rpnnen1lem6 | 
							⊢ ℝ  ≼  ( ℚ  ↑m  ℕ )  |