Metamath Proof Explorer


Theorem reexALT

Description: Alternate proof of reex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 23-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reexALT
|- RR e. _V

Proof

Step Hyp Ref Expression
1 nnexALT
 |-  NN e. _V
2 qexALT
 |-  QQ e. _V
3 1 2 rpnnen1
 |-  RR ~<_ ( QQ ^m NN )
4 reldom
 |-  Rel ~<_
5 4 brrelex1i
 |-  ( RR ~<_ ( QQ ^m NN ) -> RR e. _V )
6 3 5 ax-mp
 |-  RR e. _V