Metamath Proof Explorer


Theorem relcnvexb

Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)

Ref Expression
Assertion relcnvexb ( Rel 𝑅 → ( 𝑅 ∈ V ↔ 𝑅 ∈ V ) )

Proof

Step Hyp Ref Expression
1 cnvexg ( 𝑅 ∈ V → 𝑅 ∈ V )
2 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
3 cnvexg ( 𝑅 ∈ V → 𝑅 ∈ V )
4 eleq1 ( 𝑅 = 𝑅 → ( 𝑅 ∈ V ↔ 𝑅 ∈ V ) )
5 3 4 syl5ib ( 𝑅 = 𝑅 → ( 𝑅 ∈ V → 𝑅 ∈ V ) )
6 2 5 sylbi ( Rel 𝑅 → ( 𝑅 ∈ V → 𝑅 ∈ V ) )
7 1 6 impbid2 ( Rel 𝑅 → ( 𝑅 ∈ V ↔ 𝑅 ∈ V ) )