Metamath Proof Explorer


Theorem relpeq4

Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpeq4 ( 𝐴 = 𝐶 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 feq2 ( 𝐴 = 𝐶 → ( 𝐻 : 𝐴𝐵𝐻 : 𝐶𝐵 ) )
2 raleq ( 𝐴 = 𝐶 → ( ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ∀ 𝑦𝐶 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
3 2 raleqbi1dv ( 𝐴 = 𝐶 → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ∀ 𝑥𝐶𝑦𝐶 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
4 1 3 anbi12d ( 𝐴 = 𝐶 → ( ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ↔ ( 𝐻 : 𝐶𝐵 ∧ ∀ 𝑥𝐶𝑦𝐶 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ) )
5 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
6 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ↔ ( 𝐻 : 𝐶𝐵 ∧ ∀ 𝑥𝐶𝑦𝐶 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
7 4 5 6 3bitr4g ( 𝐴 = 𝐶 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) )