Metamath Proof Explorer


Theorem relpeq5

Description: Equality theorem for relation-preserving functions. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpeq5 ( 𝐵 = 𝐶 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 feq3 ( 𝐵 = 𝐶 → ( 𝐻 : 𝐴𝐵𝐻 : 𝐴𝐶 ) )
2 1 anbi1d ( 𝐵 = 𝐶 → ( ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ↔ ( 𝐻 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ) )
3 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
4 df-relp ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ↔ ( 𝐻 : 𝐴𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
5 2 3 4 3bitr4g ( 𝐵 = 𝐶 → ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) )