Description: Comparison of a real and its negative to zero. Compare lt0neg1 . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | relt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < ( 0 −ℝ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | reposdif | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ↔ 0 < ( 0 −ℝ 𝐴 ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < ( 0 −ℝ 𝐴 ) ) ) |