Description: Comparison of a real and its negative to zero. Compare lt0neg1 . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | relt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < ( 0 -R A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | reposdif | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 <-> 0 < ( 0 -R A ) ) ) |
|
3 | 1 2 | mpan2 | |- ( A e. RR -> ( A < 0 <-> 0 < ( 0 -R A ) ) ) |