Description: Comparison of a real and its negative to zero. Compare lt0neg2 . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | relt0neg2 | |- ( A e. RR -> ( 0 < A <-> ( 0 -R A ) < 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re | |- ( A e. RR -> 0 e. RR ) |
|
2 | id | |- ( A e. RR -> A e. RR ) |
|
3 | reltsub1 | |- ( ( 0 e. RR /\ A e. RR /\ A e. RR ) -> ( 0 < A <-> ( 0 -R A ) < ( A -R A ) ) ) |
|
4 | 1 2 2 3 | syl3anc | |- ( A e. RR -> ( 0 < A <-> ( 0 -R A ) < ( A -R A ) ) ) |
5 | resubid | |- ( A e. RR -> ( A -R A ) = 0 ) |
|
6 | 5 | breq2d | |- ( A e. RR -> ( ( 0 -R A ) < ( A -R A ) <-> ( 0 -R A ) < 0 ) ) |
7 | 4 6 | bitrd | |- ( A e. RR -> ( 0 < A <-> ( 0 -R A ) < 0 ) ) |