Metamath Proof Explorer


Theorem relt0neg2

Description: Comparison of a real and its negative to zero. Compare lt0neg2 . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion relt0neg2 A0<A0-A<0

Proof

Step Hyp Ref Expression
1 elre0re A0
2 id AA
3 reltsub1 0AA0<A0-A<A-A
4 1 2 2 3 syl3anc A0<A0-A<A-A
5 resubid AA-A=0
6 5 breq2d A0-A<A-A0-A<0
7 4 6 bitrd A0<A0-A<0