Metamath Proof Explorer


Theorem relt0neg2

Description: Comparison of a real and its negative to zero. Compare lt0neg2 . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion relt0neg2 ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 − 𝐴 ) < 0 ) )

Proof

Step Hyp Ref Expression
1 elre0re ( 𝐴 ∈ ℝ → 0 ∈ ℝ )
2 id ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ )
3 reltsub1 ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 0 − 𝐴 ) < ( 𝐴 𝐴 ) ) )
4 1 2 2 3 syl3anc ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 − 𝐴 ) < ( 𝐴 𝐴 ) ) )
5 resubid ( 𝐴 ∈ ℝ → ( 𝐴 𝐴 ) = 0 )
6 5 breq2d ( 𝐴 ∈ ℝ → ( ( 0 − 𝐴 ) < ( 𝐴 𝐴 ) ↔ ( 0 − 𝐴 ) < 0 ) )
7 4 6 bitrd ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 − 𝐴 ) < 0 ) )