Description: Comparison of a real and its negative to zero. Compare lt0neg2 . (Contributed by SN, 13-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | relt0neg2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 −ℝ 𝐴 ) < 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elre0re | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
2 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
3 | reltsub1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 0 −ℝ 𝐴 ) < ( 𝐴 −ℝ 𝐴 ) ) ) | |
4 | 1 2 2 3 | syl3anc | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 −ℝ 𝐴 ) < ( 𝐴 −ℝ 𝐴 ) ) ) |
5 | resubid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 −ℝ 𝐴 ) = 0 ) | |
6 | 5 | breq2d | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 𝐴 ) < ( 𝐴 −ℝ 𝐴 ) ↔ ( 0 −ℝ 𝐴 ) < 0 ) ) |
7 | 4 6 | bitrd | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ ( 0 −ℝ 𝐴 ) < 0 ) ) |