| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rersubcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A -R C ) e. RR ) |
| 2 |
1
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A -R C ) e. RR ) |
| 3 |
|
rersubcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
| 4 |
3
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
| 5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 6 |
2 4 5
|
ltadd2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R C ) < ( B -R C ) <-> ( C + ( A -R C ) ) < ( C + ( B -R C ) ) ) ) |
| 7 |
|
repncan3 |
|- ( ( C e. RR /\ A e. RR ) -> ( C + ( A -R C ) ) = A ) |
| 8 |
7
|
ancoms |
|- ( ( A e. RR /\ C e. RR ) -> ( C + ( A -R C ) ) = A ) |
| 9 |
8
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( A -R C ) ) = A ) |
| 10 |
|
repncan3 |
|- ( ( C e. RR /\ B e. RR ) -> ( C + ( B -R C ) ) = B ) |
| 11 |
10
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B ) |
| 12 |
11
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + ( B -R C ) ) = B ) |
| 13 |
9 12
|
breq12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + ( A -R C ) ) < ( C + ( B -R C ) ) <-> A < B ) ) |
| 14 |
6 13
|
bitr2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A -R C ) < ( B -R C ) ) ) |