| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 2 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 4 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 5 |
|
reltsub1 |
|- ( ( A e. RR /\ ( B + C ) e. RR /\ B e. RR ) -> ( A < ( B + C ) <-> ( A -R B ) < ( ( B + C ) -R B ) ) ) |
| 6 |
1 3 4 5
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < ( B + C ) <-> ( A -R B ) < ( ( B + C ) -R B ) ) ) |
| 7 |
|
repncan2 |
|- ( ( B e. RR /\ C e. RR ) -> ( ( B + C ) -R B ) = C ) |
| 8 |
7
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + C ) -R B ) = C ) |
| 9 |
8
|
breq2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) < ( ( B + C ) -R B ) <-> ( A -R B ) < C ) ) |
| 10 |
6 9
|
bitr2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R B ) < C <-> A < ( B + C ) ) ) |