Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> ( A -R C ) = ( B -R C ) ) |
2 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> A e. RR ) |
3 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> C e. RR ) |
4 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> B e. RR ) |
5 |
|
rersubcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
6 |
4 3 5
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> ( B -R C ) e. RR ) |
7 |
2 3 6
|
resubaddd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> ( ( A -R C ) = ( B -R C ) <-> ( C + ( B -R C ) ) = A ) ) |
8 |
1 7
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> ( C + ( B -R C ) ) = A ) |
9 |
|
repncan3 |
|- ( ( C e. RR /\ B e. RR ) -> ( C + ( B -R C ) ) = B ) |
10 |
3 4 9
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> ( C + ( B -R C ) ) = B ) |
11 |
8 10
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A -R C ) = ( B -R C ) ) -> A = B ) |
12 |
11
|
ex |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R C ) = ( B -R C ) -> A = B ) ) |
13 |
|
oveq1 |
|- ( A = B -> ( A -R C ) = ( B -R C ) ) |
14 |
12 13
|
impbid1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A -R C ) = ( B -R C ) <-> A = B ) ) |